
Statistical Model Checking for SystemC Models

Van Chan Ngo Axel Legay Jean Quilbeuf

INRIA, Campus Beaulieu, 35042 Rennes, France

Email: {chan.ngo, axel.legay, jean.quilbeuf}@inria.fr

Abstract—Transaction-level modeling with SystemC has been
very successful in describing the behavior of embedded systems
by providing high-level executable models, in which many of
them have an inherent probabilistic behavior, i.e., random data,
unreliable components. It is crucial to evaluate the quantitative
and qualitative analysis of the probability of the system prop-
erties. Such analysis can be conducted by constructing a formal
model of the system and using probabilistic model checking.
However, this method is infeasible for large and complex systems
due to the state space explosion. In this paper, we demonstrate
the successful use of statistical model checking to carry out such
analysis directly from large SystemC models and allows designers
to express a wide range of useful properties.

Keywords-Runtime Verification, Probabilistic Assertion, Statis-
tical Model Checking, Program Verification, SystemC

I. INTRODUCTION

Transaction-level modeling (TLM) with SystemC has been

become increasingly prominent in describing the behavior of

embedded systems [3], i.e., System-on-Chips (SoCs). It allows

complex electronic components and software control units

to be combined into a single model, enabling simulation of

the whole system at once. In many cases, models include

probabilistic characteristics, i.e, random data, reliability of the

system’s components. It is crucial to evaluate the quantitive

and qualitative analysis of the probability of the system’s

properties. For instance, the reliability and availability of an

embedded control system [14] that contains an input processor

connected to groups of sensors, an output processor, connected

to groups of actuators, and a main processor, that communi-

cates with the I/O processors through a bus, can be modeled

by a continuous-time Markov chain (CTMC) [25]. CTMC is

a special case of a discrete-state stochastic process in which

the probability distribution of the next state depends only on

the current state. The analysis quantifies the probability or rate

of all safety-related faults: How likely the system is available

to meet a demand for service? What is the probability that

the system repairs itself after a failure (e.g., that the system

conforms to the existent and prominent standards such as the

Safety Integrity Levels (SILs))?
In order to conduct such analysis, a general approach is

modeling and analyzing a probabilistic model of the system

(i.e, Markov chains, stochastic processes), in which the algo-

rithm for computing the measures of properties depends on the

class of systems being considered and the logic used for spec-

ifying the properties. Many algorithms with the corresponding

mature tools are based on model checking techniques that

compute probability by a numerical approach [4], [21], [9]. For

a variety of probabilistic systems, the most popular modeling

formalism is Markov chain or Markov decision processes,

for which Probabilistic Model Checking (PMC) tools such as

PRISM [10] and MRMC [13] can be used. PMC is widely used

and has been successfully applied to the verification of a range

of timed and probabilistic systems. One of the main challenges

is the complexity of the algorithms in terms of execution time

and memory space due to the size of the state space that tends

to grow exponentially, also known as the state space explosion.

As a result, the analysis is infeasible. In addition, these tools

cannot work directly with the SystemC source code, meaning

that a formal model of SystemC model needs to be provided.

An alternative way to evaluate these systems is Statisti-
cal Model Checking (SMC), a simulation-based approach.

Simulation-based approaches produce an approximation of

the value to be evaluated, based on a finite set of system’s

executions. Clearly, comparing to the numerical approach, a

simulation-based solution does not provide an exact answer.

However, users can tune the statistical parameters such as

the confidence interval and the confidence, according to the

requirements. Simulation-based approaches do not construct

all the reachable states of the model-under-verification (MUV),

thus they require far less execution time and memory space

than numerical approaches. For some real-life systems, they

are the only one option [28] and have shown the advantages

over other methods such as PMC [9], [12].

Our overall framework weaves the idea of statistical model

checking to yield qualitative and quantitative analysis for prob-

ability of a temporal property for SystemC models. The paper

makes the following contributions: (i) we propose a framework

to verify bounded temporal properties for SystemC models

with both timed and probabilistic characteristics. The frame-

work contains two main components: a monitor that observes

a set of execution traces of the MUV and a statistical model

checker implementing a set of hypothesis testing algorithms.

We use techniques similar to the one proposed by Tabakov et

al. [23] to automatically generate the monitor. The statistical

model checker is implemented as a plugin of the checker

Plasma Lab [2], in which the properties to be verified are

expressed in Bounded Linear Temporal Logic (BLTL); (ii) we

present a method that allows users to expose a rich set of user-

code primitives in form of atomic propositions in BLTL. These

propositions help users exposing the state of the SystemC

simulation kernel and the full state of the SystemC source code

model. In addition, users can define their own fine-grained

time resolution that is used to reason on the semantics of the

2016 IEEE 17th International Symposium on High Assurance Systems Engineering

1530-2059/16 $31.00 © 2016 IEEE

DOI 10.1109/HASE.2016.24

197

logic expressing the properties rather the boundary of clock

cycles in the SystemC simulation; and (iii) we demonstrate our

approach through a running example, in which we showcase

how our SMC-based verification framework works. We also

illustrate the performance of the framework through some

experiments.

II. BACKGROUND

A. SystemC and the Simulation Kernel

SystemC1 is a C++ library [6] providing primitives for

modeling hardware and software systems at the level of

transactions. Every SystemC model can be compiled with

a standard C++ compiler to produce an executable program

called executable specification. This specification is used to

simulate the system behavior with the provided event-driven

simulator. A SystemC model is a hierarchical composition

of modules (sc module). Modules are building blocks of

SystemC design, they are like modules in Verilog [24], classes

in C++. A module consists of an interface for communicating

with other modules and a set of processes running concurrently

to describe the functionality of the module. An interface

contains ports (sc port), they are similar to the hardware pins.

Modules are interconnected using either primitive channels

(i.e., the signals, sc signal) or hierarchical channels via their

ports. Channels are data containers that generate events in the

simulation kernel whenever the contained data changes.

Processes are not hierarchical, so no process can call another

process directly. A process is either a thread or a method. A

thread process (sc thread) can suspend its execution by calling

the library statement wait or any of its variants. When the

execution is resumed, it will continue from that point. Threads

run only once during the execution of the program and are not

expected to terminate. On the other hand, a method process

(sc method) cannot suspend its execution by calling wait and

is expected to terminate. Thus, it only returns the control to

the kernel when reaching the end of its body.

An event is an instance of the SystemC event class

(sc event) whose occurrence triggers or resumes the execution

of a process. All processes which are suspended by waiting for

an event are resumed when this event occurs, we say that the

event is notified. A module’s process can be sensitive to a list

of events. For example, a process may suspend itself and wait

for a value change of a specific signal. Then, only this event

occurrence can resume the execution of the process. In general,

a process can wait for an event, a combination of events, or for

an amount of time to be resumed. In SystemC, integer values

are used as discrete time model. The smallest quantum of

time that can be represented is called time resolution meaning

that any time value smaller than the time resolution will be

rounded off. The available time resolutions are femtosecond,

picosecond, nanosecond, microsecond, millisecond, and sec-

ond. SystemC provides functions to set time resolution and de-

clare a time object. The SystemC simulator is an event-driven

simulation [1], [19]. It establishes a hierarchical network of

1IEEE Standard 1666-2005

finite number of parallel communicating processes which run

under the supervision of the distinguished simulation kernel

process. Only one process is dispatched by the scheduler to run

at a time point, and the scheduler is non-preemptive, that is,

the running process returns control to the kernel only when it

finishes executing or explicitly suspends itself by calling wait.
Like hardware modeling languages, the SystemC scheduler

supports the notion of delta-cycles [16]. A delta-cycle lasts for

an infinitesimal amount of time and is used to impose a partial

order of simultaneous actions which interprets zero-delay

semantics. Thus, the simulation time is not advanced when

the scheduler processes a delta-cycle. During a delta-cycle,

the scheduler executes actions in two phases: the evaluate and

the update phases.

The simulation semantics of the SystemC scheduler is

presented as follows: (1) Initialize. During the initialization,

each process is executed once unless it is turned off by calling

dont initialize(), or until a synchronization point (i.e., a wait)
is reached. The order in which these processes are executed is

unspecified; (2) Evaluate. The kernel starts a delta-cycle and

runs all processes that are ready to run one at a time. In this

same phase a process can be made ready to run by an event

notification; (3) Update. Execute any pending calls to update()
resulting from calls to request update() in the evaluate phase.

Note that a primitive channel uses request update() to have

the kernel call its update() function after the execution of

processes; (4) Delta-cycle notification. The kernel enters the

delta notification phase where notified events trigger their

dependent processes. Note that immediate notifications may

make new processes runnable during step (2). If so the kernel

loops back to step (2) and starts another evaluation phase and

a new delta-cycle. It does not advance simulation time; (5)

Simulation-cycle notification. If there are no more runnable

processes, the kernel advances simulation time to the earliest

pending timed notification. All processes sensitive to this event

are triggered, the kernel loops back to step (2) and starts a new

delta-cycle. This process is finished when all processes have

terminated or the specified simulation time is passed.

B. Statistical Model Checking

We first recall the syntax and semantics of BLTL [22], an

extension of Linear Temporal Logic (LTL) with time bounds

on temporal operators. A formula ϕ is defined over a set of

atomic propositions AP as in LTL by the grammar ϕ ::=
true|false|p ∈ AP |ϕ1 ∧ ϕ2|¬ϕ|ϕ1 U≤T ϕ2, where the time

bound T is an amount of time or a number of states in the

execution trace. The temporal modalities F (the “eventually”,

sometimes in the future) and G (the “always”, from now on

forever) can be derived from the “until” U as follows.

F≤T ϕ = true U≤T ϕ and G≤T ϕ = ¬F≤T ¬ϕ
The semantics of BLTL is defined w.r.t execution traces of

a model. Let ω = (s0, t0)(s1, t1)...(sN−1, tN−1), N ∈ N be

an execution trace, ωk and ωk be the prefix and suffix of

ω respectively. We denote the fact that ω satisfies the BLTL

formula ϕ by ω |= ϕ.

198

• ωk |= true and ωk �|= false
• ωk |= p, p ∈ AP iff p ∈ L(sk), where L(sk) is the set

of atomic propositions which are true in state sk
• ωk |= ϕ1 ∧ ϕ2 iff ωk |= ϕ1 and ωk |= ϕ2

• ωk |= ¬ϕ iff ωk �|= ϕ
• ωk |= ϕ1 U≤T ϕ2 iff there exists i ∈ N such that ωk+i |=

ϕ2, Σ0<j≤i(tk+j − tk+j−1) ≤ T , and for each 0 ≤ j <
i, ωk+j |= ϕ1

Let M be the formal model of the MUV (i.e., a stochastic

process) and ϕ be a property expressed as a BLTL for-

mula. The statistical model checking [15] problem consists

of answering the following questions: (i) Is the probability

that M satisfies ϕ greater or equal to a threshold θ with a

specific level of statistical confidence (qualitative analysis,

written M |= Pr≥θ(ϕ))? (ii) What is the probability that

M satisfies ϕ with a specific level of statistical confidence

(quantitative analysis, written M |= Pr(ϕ))? Many statistical

model checker are implemented [27], [2] that have shown their

advantages over other methods such as PMC on several case

studies.
This is done by associating each execution trace of M

with a discrete random Bernoulli variable Bi, in which the

outcome for Bi, denoted by bi, is 1 if the trace satisfies

ϕ and 0 otherwise. The predominant statistical method for

verifying M |= Pr≥θ(ϕ) is based on hypothesis testing.

Let p = Pr(ϕ), to determine whether p ≥ θ, we test the

hypothesis H0 : p ≥ p0 = θ + δ against the alternative

hypothesis H1 : p ≤ p1 = θ − δ based on the observations

of Bi. The size of indifference region is defined by p0 − p1.

If we take acceptance of H0 to mean acceptance of Pr≥θ(ϕ)
as true and acceptance of H1 to mean rejection of Pr≥θ(ϕ)
as false, then we can use acceptance sampling (e.g., Younes

in [26] has proposed two solutions, called single sampling plan
and sequential probability ratio test) to verify Pr≥θ(ϕ). An

acceptance sampling test with strength (α, β) guarantees that

H1 is accepted with probability at most α when H0 holds and

H0 is accepted with probability at most β when H1 holds,

called a Type-I error and Type-II error, respectively.
To answer the quantitative question, M |= Pr(ϕ), an

alternative statistical method, based on estimation instead of

hypothesis testing, has been developed. For instance, the prob-

ability estimations are based on results derived by Chernoff

and Hoeffding bounds [11]. This approach uses n observations

b1, ..., bn to compute an approximation of p: p̃ = 1
nΣ

n
i=1bi.

The approximation satisifies that Pr[|p̃ − p| < δ] ≥ 1 − α.

Based on the theorem of Hoeffding, the number of observa-

tions which is determined from the absolute error δ and the

confidence 1− α is n = � 1
2δ2 log

2
α�.

Although SMC can only provide approximate results with a

user-specified level of statistical confidence, it is compensated

for by its better scalability and resource consumption. Since

the models to be analyzed are often approximately known,

an approximate result in the analysis of desired properties

within specific bounds is quite acceptable. SMC has recently

been applied in a wide range of research areas including

software engineering (e.g., verification of critical embedded

systems) [9], system biology, or medical area [12].

III. A RUNNING EXAMPLE

We will use a simple case study with a FIFO channel as

a running example. This example illustrates how designers

can create hierarchical channels that encapsulate both design

structure and communication protocols. In the design, once

a nanosecond the producer will write one character to the

FIFO with probability p1, while the consumer will read one

character from the FIFO with probability p2. The FIFO which

is derived from sc channel encapsulates the communication

protocol between the producer and the consumer.

The FIFO channel is designed to ensure that all data is

reliably delivered despite the varying rates of production and

consumption. The channel uses an event notification hanshake

protocol for both the input and output. It uses a circular buffer

implemented within a static array to store and retrieve the

items within the FIFO. We assume that the sizes of the mes-

sages and the FIFO buffer are fixed. Hence, it is obvious that

the time required to transfer completely a message, or message

latency, depends on the production and consumption rates, the

FIFO buffer size, the message size, and the probabilities of

successful writing and reading. The full implementation of the

example can be obtained at the url2, in which the probabilities

of writing and reading are implemented with the Bernoulli

distributions with probabilities p1 and p2 respectively from

GNU Scientific Library (GSL) [7].

The quantitative analysis under consideration is: “What is
the probability that messages are transfered completely within
T1 nanoseconds during T nanoseconds of operation?”. This

kind of analysis can, thus, be conducted in the early design

steps. To formulate the underlying property more precisely,

we have to take into account the agreement protocol between

the producer and consumer, i.e., the simple protocol can be

every message has special starting delimiter with the character

’&’ and ending delimiter with the character ’@’. Thus, the

property can be translated in BLTL as follows:

ϕ = G≤T ((c read = ′&′)→ F≤T1
(c read = ′@′))

where c read is the character read in the FIFO by the

consumer. The input providing to the SMC checker is Pr(ϕ).
This property is expressed in terms of the characters read in

the FIFO by the consumer, but the communication protocol

between the producer and the consumer is abstracted at a very

high level. It is an illustration of the types of properties that

can be checked on TLM specifications. The verification of

such a property at the transaction level can be connected to its

counterpart at register-transfer level (RTL) in order to check

the correctness of RTL implementations.

IV. SMC FOR SYSTEMC MODELS

A. SystemC Model State

Temporal logic formulas are interpreted over execution

traces and traditionally a trace has been defined as a sequence

2https://project.inria.fr/plasma-lab/files/2015/09/producer consumer.tar .gz

199

of states in the execution of a model. Therefore before we can

define an execution trace we need a precise definition of the

state of a SystemC model simulation. We are inspired by the

definition of system state in [23], which consists of the state

of the simulation kernel and the state of the SystemC model.

We consider the external libraries as black boxes, meaning that

their states are not exposed.

The state of the kernel contains the information about the

current phase of the simulation (i.e., delta-cycle notification,

simulation-cycle simulation) and the SystemC events notified

during the execution of the model. The state of the SystemC

model is the full state of the C++ code of all modules in the

model, which includes the values of the module attributes, the

location of the program counter (i.e., a particular statement

is reached during the execution of the model, the function

calls), the call stack including the function execution, function

parameters and return values, and the status of the module pro-

cesses (i.e., suspended, runnable). We use V = {v0, ..., vn−1}
to denote the finite set of variables of primitive type (e.g, usual

scalar or enumerated type in C/C++) whose value domain DX

represents the states of a SystemC model.

We consider here some examples about states of the simu-

lation kernel and the SystemC model. Assume that a SystemC

model has an event named e, then the model state can contain

information such as the kernel is at the end of simulation-cycle

notification phase and the event e is notified. Consider the

running example again, a state can consist of the information

about the characters received by the consumer, represented by

the variable c read. It also contains the information about

the location of the program counter right before and after

a call of the function send() in the module Producer that

are represented by two Boolean variables send start and

send done, respectively, meaning that they hold the value true
immediately before and after a call of the function send().
Another example, we consider a module that consists several

statements at different locations in the source code, in which

these statements contain the division operator “/” followed by

zero or more spaces and the variable “a” (e.g., the statement y
= (x + 1) / a). Then, a Boolean variable which holds the value

true right before the execution of all such statements can be

used as a part of the states.

We have discussed so far the state of a SystemC model

execution. It remains to discuss how the semantics of the

temporal operators is interpreted over the states in an execu-

tion. That means how the states are sampled in order to make

the transition from one state to another state. The following

definition gives the concept of temporal resolution, in which

the states are evaluated only at instances in which the temporal

resolution holds. It allows the user to set granularity of time.

Definition 1 (Temporal resolution): A temporal resolution

Tr is a finite set of Boolean expressions defined over V which

specifies when the set of variables V is evaluated.

Temporal resolution can be used to define a more fine-grained

model of time than a coarse-grained one provided by a cycle-

based simulation. We call the expressions in Tr temporal
events. Whenever a temporal event is satisfied or the temporal

event occurs, V is sampled. For example, in the producer and

consumer model, assume that we want the satisfaction of the

underlying BLTL ϕ to be checked whenever at the end of

simulation-cycle notification or immediately after the event

write event is notified during a run of the model. Hence, we

can define a temporal resolution as the following set Tr =
{end sc, we notified}, where end sc and we notified are

Boolean expressions that have the value true whenever the

kernel phase is at the end of the simulation-cycle notification

and the event write event notified, respectively.

We denote the set of occurrences of temporal events from

Tr along an execution of a SystemC model by T s
r , called a

temporal resolution set. The value of a variable v ∈ V at an

event occurrence ec ∈ T s
r is defined by a mapping ξvval : T s

r →
Dv , where Dv is the value domain of v. Hence, the state of the

SystemC model at ec is defined by a tuple (ξv0

val, ..., ξ
vn−1

val).
A mapping ξt : T s

r → T is called a time event that identifies

the simulation time at each occurrence of an event from the

temporal resolution. Hence, the set of time points, called time
tag, which corresponds to a temporal resolution set T s

r =
{ec0 , ..., ecN−1

}, N ∈ N, is given as follows.

Definition 2 (Time tag): Given a temporal resolution set

T s
r , the time tag T corresponding to T s

r is a finite or infinite

set of non-negative reals {t0, t1, ..., tN−1}, where ti+1 − ti =
δti ∈ R≥0, ti = ξt(eci).

B. Model and Execution Trace

A SystemC model can be viewed as a hierarchical network

of parallel communicating processes. Hence, the execution of

a SystemC model is an alternation of the control between the

model’s processes, the external libraries and the kernel process.

The execution of the processes is supervised by the kernel

process to concurrently update new values for the signals and

variables w.r.t the cycle-based simulation. For example, given

a set of runnable processes in a simulation-cycle, the kernel

chooses one of them to execute first in a non-deterministic

manner as described in the prior section.

Let V be the set of variables whose values represent

the states of a SystemC model. The values of variables

in V are determined by a given probability distribution

(i.e., production from all probability distributions used in

the model). Given a temporal resolution Tr and its cor-

responding temporal resolution set along an execution of

the model T s
r = {ec0 , ..., ecN−1

}, N ∈ N, the evaluation

of V at the event occurrence eci is defined by the tuple

(ξv0

val, ..., ξ
vn−1

val), or a state of the model at eci , denoted by

V (eci) = (V (eci)(v0), V (eci)(v1), ..., V (eci)(vn−1)), where

V (eci)(vk) = ξvk

val(eci) with k = 0, ..., n − 1 is the value

of the variable vk at eci . We denote the set of all possible

evaluations by VT s
r
⊆ DV , called the state space of the

random variables in V . State changes are observed only at

the moments of event occurrences. Hence, the operational

semantics of a SystemC model is represented by a stochastic
process {(V (eci), ξt(eci)), eci ∈ T s

r }i∈N, taking values in

VT s
r
×R≥0 and indexed by the parameter eci , which are event

occurrences in the temporal resolution set T s
r . An execution

200

trace is a realization of the stochastic process is given as

follows.

Definition 3 (Execution trace): An execution trace of a

SystemC model corresponding to a temporal resolution

set T s
r = {ec0 , ..., ecN−1

}, N ∈ N is a sequence of

states and event occurrence times, denoted by ω =
(s0, t0)...(sN−1, tN−1), such that for each i ∈ 0, ..., N − 1,

si = V (eci) and ti = ξt(eci).

N is the length (finite or infinite) of the execution, also denoted

by |ω|. Let V ′ ⊆ V , the projection of ω on V ′, denoted by

ω ↓V ′ , is an execution trace such that |ω ↓V ′ | = |ω| and

∀v ∈ V ′, ∀ec ∈ T s
r , V ′(ec)(v) = V (ec)(v).

C. Expressing Properties

Our approach allows users to refer to a rich set of atomic

propositions AP which is defined over the set of variables V
as previously mentioned. These propositions abstract the states

of a SystemC model and evaluate to either true or false in such

a state. The implementation provides a mechanism that allows

users to declare V in order to define the set of propositions

AP without requiring users to write the monitoring code or

to write aspect-oriented programming advices manually.

Users declare these variables via a high-level language in

a configuration file as the input of our tool. For instance,

referring to the producer and consumer model, the declara-

tion location send start “%Producer::send()”:call declares a

Boolean variable send start that holds the value true imme-

diately before the execution of the model reaches a call site

of the function send() in the module Producer. The characters

received by the consumer which is represented by the variable

c read can be declared as attribute pnt con→c int c read,

where pnt con is a pointer to the Consumer object and c int
is an attribute of the Consumer module representing the

received character. The detailed syntax can be found in the

tool manual3.

AP are predicates defined over the set of variables V . Using

these predicates, users can define temporal properties related

to the states of the kernel and the SystemC model. Recall the

considered property of the running example, the predicates

which are defined over the variable c read are c read =′ &′

and c read =′ @′. Another example, assume that we want to

answer the following question: “Over a period of T time units,
is the probability that the number of elements in the FIFO
buffer in between n1 and n2 is greater or equal to θ with the
confidence α?”. The predicates need to be defined in order to

construct the underlying BLTL formula are n1 ≤ nelements

and nelements ≤ n2, where nelements is an integer variable

that represents the current number of elements in the FIFO

buffer (it captures the value of the num elements attribute in

the Fifo module). Then, the property can be translated in BLTL

with the operator “always” as follows. The input which is

given to the checker is Pr≥θ(ϕ) along with the confidence α.

ϕ = G≤T ((n1 ≤ nelements) & (nelements ≤ n2))

3https://project.inria.fr/plasma-lab/documentation/tutorial/mag manual/

V. IMPLEMENTATION

A. MAG and SystemC Plugin

Fig. 1 shows our SMC-based verification tool implementa-

tion that contains two main components: a monitor and aspect-
advice generator (MAG) and a statistical model checker
(SystemC Plugin). In principle, the full state can be observed

during the simulation of the model. In practice, however, users

define a set of variables of interest, according to the properties

that the users want to verify, called observed variables, and

only these variables appear in the states of an execution

trace. Given a SystemC model, we use Vobs ⊆ V to denote

Fig. 1: The framework’s flow

the set of observed variables, to expose the states of the

SystemC model. Then, the observed execution traces of the

model are the projections of the execution traces on Vobs,

meaning that for every execution trace ω, the corresponding

observed execution trace is ω ↓Vobs
. In the following, when

we mention execution traces, we mean observed execution

traces. The implementation of MAG allows users to define

a set of observed variables that is used with a temporal

resolution to generate a monitor. The implementation based

on the techniques in [23], in which a monitor and a file

containing aspects are generated in order to automatically

instrument the SystemC model with the help of AspectC++ [5]

and establish a communication between the generated monitor

and the instrumented model. The monitor evaluates the set

of observed variables at every time point at which an event

of the temporal resolution occurs during the SystemC model

simulation to produce a new state. For example, the variable

c read which observes the character received by the consumer

(the private attribute c int in the module Consumer) at the end

of simulation-cycle notification, is implemented by generating

a monitor and instrumenting the module Consumer to establish

a communication between them as follows. The module Con-
sumer is instrumented with AspectC++, in this case, such that

the monitor is its friend class, so the monitor can access the

private attributes of Consumer. The monitor defines a callback

function being called immediately at the end of simulation-

cycle notification, and a pointer pointing to an instance of

Consumer. The execution of the callback function consists

of getting the current value of the received character by the

consumer, assigning this character to c read, and executing

the monitor for one step (i.e., creating a new state and reporting

it to the Plasma plugin). If temporal resolutions involving

kernel simulation phases or event notifications are defined,

the calling mechanism of the callback function is realized

201

by modifiying the kernel (i.e., at the end of simulation-cycle

segment code, a call to the callback function is added).

The statistical model checker is implemented as a plugin

of Plasma Lab [2] that establishes a communication, in which

the generated monitor transmits execution traces of the MUV.

In the current version, the communication is done via the

standard input and output. When a new state is requested,

the monitor reports the current state (the values of variables

in Vobs) to the plugin. The length of traces depends on the

satisfaction of the formula to be verified, which is finite

because the temporal operators are bounded. Similarly, the

required number of execution traces depends on the hypothesis

testing algorithms in use (e.g., sequential hypothesis testing

or 2-sided Chernoff bound). The full implementation can be

downloaded on the website of Plasma Lab4.

B. Running Verification

Running the verification tool consists of two steps as

follows. First, users define a set of observed variables and a

temporal resolution in a configuration file, as well as other

necessary information as an input for MAG to generate a

monitor and an aspect-advices file. AspectC++ is then used to

instrument automatically the model. The instrumented model

and the generated monitor are compiled and linked together

with the SystemC kernel into an executable model in order

to make a set of execution traces. Referring to the running

example, users will define the set of observed variables Vobs =
{c read, nelements, end sc}, where c read is the character

read in the FIFO, nelements is the number of characters in the

FIFO buffer, and end sc is true whenever the kernel phase is

at the end of the simulation-cycle notification phase. The tem-

poral resolution will be defined as Tr = {end sc}, meaning

that a new state in execution traces is produced whenever the

simulation kernel is at the end of simulation-cycle notification

phase or every one nanosecond in the example since the time

unit is one nanosecond. The full configuration file is included

in the source code of the example.

In the second step, the plugin is used to verify the properties

of interest. The satisfaction checking of the properties is

brought out based on the set of execution traces obtained by

executing the instrumented SystemC model and can be done

by several hypothesis testing algorithms provided by Plasma

Lab.

VI. CASE STUDIES

We report the experimental results for the running example

and also demonstrate the use of our verification tool to

analyze the dependability of a large embedded control system.

The number of components in this system makes numerical

approaches such as PMC infeasible. In both case studies, we

used the 2-sided Chernoff bound algorithm with the absolute

error δ = 0.02 and the confidence 1 − α = 0.98. The

experiments were run on a machine with an Intel Core i7

2.67 GHz processor and 4GB RAM under the Linux OS with

4https://project.inria.fr/plasma-lab/download/plugins/

SystemC 2.3.0, in which the checking of the properties in the

running example took from less than one minute to several

minutes. The analysis of the embedded and control system

case study takes almost 2 hours, in which 90 properties were

verified.

A. Producer and Consumer

Let us go back to the running example in Section III, recall

that we want to compute the probability that the following

property ϕ satisfies every 1 nanosecond, with the absolute

error 0.02 and the level of confidence 0.98. In this verifi-

cation, both the FIFO buffer size and message size are 10
characters including the starting and ending delimiters, and

the production and consumption rates are 1 nanosecond. First,

we check this property with the various values of p1 and

p2. The results are given in Table I with T = 5000 and

T1 = 25 nanoseconds. It is trivial that the probability that

the message latency is smaller than T1 time increases when

p1 and p2 increase. That means that, in general, the latency

is shorter when the either the probability that the producer

successfully writes to the FIFO increases, or the probability

that the consumer successfully reads from the FIFO increases.

Second, we compute the probability that a message is sent

p1\p2 0.3 0.6 0.9
0.6 0 0.0194 0.0720
0.9 0 0.0835 1

TABLE I: The probability that the message latency is smaller

than 25 in the first 5000 nanoseconds of operation

Fig. 2: The probability that the message latency is smaller than

T1 in the first T nanoseconds of operation

completely (or the message latency) from the producer to

the consumer within T1 time over a period of T time of

operation, in which the probabilities p1 and p2 are fixed at

0.9. Fig. 2 shows this probability with different values of T1

over T = 10000 nanoseconds. It is observed that the message

latency is almost smaller than 18 nanoseconds.

B. An Embedded Control System

This case study is closely based on the one presented in

[20], [14] but contains much more components. The system

consists of an input processor (I) connected to 50 groups of

202

3 sensors, an output processor (O), connected to 30 groups

of 2 actuators, and a main processor (M), that communicates

with I and O through a bus. At every cycle, 1 minute, the

main processor polls data from the input processor that reads

and processes data from the sensor groups. Based on this data,

the main processor constructs commands to be passed to the

output processor for controlling the actuator groups.

The reliability of the system is affected by the failures of

the sensors, actuators, and processors. The probability of bus

failure is negligible, hence we do not consider it. The sensors

and actuators are used in 37 − of − 50 and 27 − of − 30
modular redundancies, respectively. That means if at least 37
sensor groups are functional (a sensor group is functional if

at least 2 of the 3 sensors are functional), the system has

enough information to function properly. Otherwise, the main

processor is reported to shut the system down. In the same

way, the system requires at least 27 functional actuator groups

to function properly (a actuator group is functional if at least 1
of the 2 actuators is functional). Transient and permanent faults

can occur in processors I or O and prevent the main processor

(M) to read data from I or send commands to O. In that

case, M skips the current cycle. If the number of continuously

skipped cycles exceeds the limit K, the processor M shuts the

system down. When a transient fault occurs in a processor,

rebooting the processor repairs the fault. Lastly, if the main

processor fails, the system is automatically shut down. The

mean times to failure for the sensors, the actuators, and the

processors are 1 month, 2 months and 1 year, respectively.

The mean time to transient failure is 1 day and I/O processors

take 30 seconds, 1 time unit, to reboot.

The reliability of the system is modeled as a CTMC [18],

[25] that is realized in SystemC, in which a sensor group

has 4 states (0, 1, 2, 3, the number of working sensors), 3
states (0, 1, 2, the number of working actuators) for an ac-

tuator group, 2 states for the main processor (0: failure,

1: functional), and 3 states for I/O processors (0: failure,

1: transient failure, 2: functional). A state of the CTMC

is represented as a tuple of the component’s states, and

the mean times to failure define the delay before which a

transition between states is enabled. The delay is sampled

from a negative exponential distribution with parameter equal

to the corresponding mean time to failure. Hence, the model

has about 2155 states comparing to the model in [14] with

about 210 states, that makes the PMC technique is unfeasible.

That means the state explosion likely occurs, even with some

abstraction, i.e., symbolic model checking is applied. The full

implementation of the SystemC code and experiments of this

case study can be obtained at the website of our tool5. We

define four types of failures: failure1 is the failure of the

sensors, failure2 is the failure of the actuators, failure3 is

the failure of the I/O processors and failure4 is the failure

of the main processor. For example, failure1 is defined by

number sensors < 37) ∧ (proci status = 2). It specifies

that the number of working sensor groups has decreased

5https://project.inria.fr/plasma-lab/embedded-control-system/

below 37 and the input processor is functional, so that it can

report the failure to the main processor. We define failure2,

failure3, and failure4 in a similar way.

In our analysis which is based on the one in [14] with

K = 4, in which the properties are checked every 1 time

unit. First, we try to determine which kind of component

is more likely to cause the failure of the system, meaning

that we determine the probability that a failure related to a

given component occurs before any other failures. The atomic

proposition shutdown =
∨4

i=1 failurei indicates that the

system has shut down because one of the failures has occurred,

and the BLTL formula ¬shutdown U≤T failurei states that

the failure i occurs within T time units and no other failures

have occurred before the failure i occurs. Fig. 3 shows the

probability that each kind of failure occurs first over a period

of 30 days of operation. It is obvious that the sensors are

likelier to cause a system shutdown. At T = 20 days, it seems

that we reached a stationary distribution indicating for each

kind of component the probability that it is responsible for

the failure of the system.

Fig. 3: The probability that each of the 4 failure types is the

cause of system shutdown in the first T time of operation

For the second part of our analysis, we divide the states

of system into three classes: “up”, where every component

is functional, “danger”, where a failure has occurred but the

system has not yet shut down (e.g., the I/O processors have

just had a transient failure but they have rebooted in time),

and “shutdown”, where the system has shut down [14]. We

aim to compute the expected time spent in each class of states

by the system over a period of T time units. To this end, we

add in the model, for each class of state c, a random variable

reward c that measures the time spent in the class c. In our

tool, the formula X≤T reward c returns the mean value of

reward c after T time of execution. The results are plotted

in Fig. 4. From T = 20 days, it seems that the amounts of

time spent in the “up” and “danger” states are converged at

101.063 = 11.57 days and 10−1.967 = 0.01 days, respectively.

VII. RELATED WORK AND CONCLUSION

There has been a lot of work on the formalization of

SystemC [8], [17]. The goal is to extract a formal model from

a SystemC program, so that tools like model-checkers can be

applied. However, all these formalizations consider semantics

203

Fig. 4: The expected amount of time spent in each of the

states: “up”, “danger” and “shutdown”

of SystemC and its simulator in some form of global model,
and they also suffer from the state space explosion when

dealing with industrial and large systems.

In [29], Zuliani et al. extended the standard SMC algorithm

for verifying Stateflow/Simulink models of a fuel control

system featuring fault-tolerance and hybrid behavior, in which

properties under verification are expressed in BLTL. The ex-

tension is based on Bayesian interval estimation and Bayesian

sequential hypothesis testing. This technique is scalable for

larger Stateflow/Simulink models because verification is fast

in most cases and the Bayesian estimation is orders of mag-

nitudes faster than previous estimation-based model checking

algorithms.

Tabakov et al. [23] proposed a framework for monitoring

temporal SystemC properties. This framework allows users to

express the properties to verify by fully exposing the semantics

of the simulator as well as the user-code. They extend LTL by

providing some extra primitives for stating the atomic propo-

sitions and let users define a much finer temporal resolution.

Their implementation consists of a modified simulation kernel,

and a tool to automatically generate the monitors and aspect

advices for instrumenting SystemC programs automatically.

This paper presents the first attempt to verify non-trivial

temporal properties of a SystemC model with statistical model

checking techniques. The framework contains two main com-

ponents: a generator that automatically generates a monitor

and instruments the MUV based on the properties to be

verified, and a statistical model checker implementing a set of

hypothesis testing algorithms. In comparison to the probabilis-

tic model checking, our approach allows users to handle large

industrial systems, expose a rich set of user-code primitives in

form of atomic propositions in BLTL, and work directly with

SystemC models. For instance, our verification framework is

used to analyze the dependability of large industrial computer-

based control systems as shown in the case study.

Currently, we consider an external library as a “black box”,

meaning that we do not consider the states of external libraries.

Thus, arguments passed to a function in an external library

cannot be monitored. For future work, we would like to allow

users to monitor the states of the external libraries. We also

plan to apply statistical model checking to verify temporal

properties of SystemC-AMS (Analog/Mixed-Signal).

REFERENCES

[1] Accellera. http://www.accellera.org/downloads/standards/systemc.
[2] B. Boyer, K. Corre, A. Legay, and S. Sedwards. Plasma lab: A flexible,

distributable statistical model checking library. In QEST’13, 2013.
[3] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd.

Surviving the soc revolution: A guide to platform-based design. In
Norwell, USA, 1999.

[4] F. Ciesinski and M. Grober. On probabilistic computation tree logic. In
Validation of Stochastic Systems, 2004.

[5] A. Gal, W. Schroder-Preikschat, and O. Spinczyk. Aspectc++: Language
proposal and prototype implementation. In OOPSLA’01, 2001.

[6] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic Publishers, Norwell, USA, 2002.

[7] GSL. http://www.gnu.org/software/gsl/.
[8] P. Herber, J. Fellmuth, and S. Glesner. Model checking systemc designs

using timed automata. In CODES/ISSS’08, 2008.
[9] H. Hermanns, B. Watcher, and L. Zhang. Probabilistic cegar. In CAV’08.

LNCS, Springer, 2008.
[10] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool

for automatic verification of probabilistic systems. In TACAS’06. LNCS,
Springer, 2006.

[11] W. Hoeffding. Probability inequalities for sums of bounded random
variables. In American Statistical Association, 1963.

[12] S. Jha, E. Clarke, C. Langmead, A. Legay, A. Platzer, and P. Zuliani. A
bayesian approach to model checking biological systems. In CMSB’09.
LNCS, Springer, 2009.

[13] J. Katoen, E. Hahn, H. Hermanns, D. Jansen, and I. Zapreev. The ins
and outs of the probabilistic model checker mrmc. In QEST’09, 2009.

[14] M. Kwiatkowska, G. Norman, and D. Parker. Controller dependability
analysis by probabilistic model checking. In Control Engineering
Practice. Elsevier, 2007.

[15] A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking:
An overview. In RV’10, 2010.

[16] R. Lipsett, C. Schaefer, and C. Ussery. VHDL: Hardware description
and design. Kluwer Academic Publishers, 1993.

[17] F. Maraninchi, M. Moy, C. Helmstetter, J. Cornet, C. Traulsen, and
L. Maillet-Contoz. Systemc/tlm semantics for heterogeneous socs
validation. In NEWCAS/TAISA’08, 2008.

[18] M. A. Marsan and M. Gerla. Markov models for multiple bus
multiprocessor systems. In IEEE Transactions on Computer, 1982.

[19] W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and W. Rosen-
stiehl. The simulation semantics of systemc. In DATE 2001, 2001.

[20] J. Muppala, G. Ciardo, and K. Trivedi. Stochastic reward nets for
reliability prediction. In CRMS’94, 1994.

[21] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical
techniques for analyzing concurrent and probabilistic systems. In CRM
Monograph Series, 2004.

[22] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking
of stochastic systems. In CAV’05, 2004.

[23] D. Tabakov and M. Vardi. Monitoring temporal systemc properties. In
Formal Methods and Models for Codesign, 2010.

[24] D. Thomas and P. Moorby. The verilog hardware description language.
In Springer. ISBN 0-3878-4930-0, 2008.

[25] K. S. Trivedi. Probability and statistics with reliability, queueing, and
computer science applications. In Englewood Cliffs, 1982.

[26] H. Younes. Verification and planning for stochastic processes with
asynchronous events. In PhD Thesis, Carnegie Mellon, 2005.

[27] H. Younes. Ymer: A statistical model checker. In CAV’05, 2005.
[28] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs

statistical probabilistic model checking. In STTT’06, 2006.
[29] P. Zuliani, A. Platzer, and E. M.Clarke. Bayesian statistical model

checking with application to simulink/stateflow verification. In Formal
Methods in System Design, 2013.

204

