
Translation Validation for

Synchronous Specification

in the Signal Compiler
Van-Chan Ngo
Jean-Pierre Talpin
Thierry Gautier

FORTE 2015

INRIA Rennes, France

Construct a modular
translation validation-
based verification
framework to check the
correctness of the
synchronous data-flow
compiler, Signal.

Agenda
• Introduction

• Motivation

• Related work

• Approach

• Formally verified Signal compiler

• Clock semantics preservation

• Data dependency preservation

• Value-equivalence preservation

• Detected bugs

• Conclusion

Motivation

• GCC compiles b < c into (b == 0) & (c != 0)

• Program always aborts

 Compilers always might have some bugs

Development of critical software

• Safety requirements have to be implemented correctly

• Formal verification is applied at source level (static
analysis, model checking, proof)

• The guarantees are obtained at source program might
be broken due to the compiler bugs

 Raise awareness about the importance of compiler
verification in critical software development

Related work on compiler verification

• SuperTest: test and validation suite

• DO-178: certification standards

• Astrée: a static analyzer

• Static analysis of Signal programs for efficient code
generation (Gamatié et al.)

• Translation validation for optimizing compiler (Berkeley, US)

• CompCert: a certified C compiler (Inria, France)

• Verified LLVM compiler (Harvard, US)

Compiler verification
Testing-based approach

• Test and validation suite to verify compilers

• Test suite to qualify the compiler’s output

Formal method-based approach

• Formal verification of compilers

• Formal verification of compiler’s output

• Translation validation to check the correctness of the
compilation

Translation validation

• Takes the source and compiled programs as input

• Checks that the source program semantics is
preserved in the compiled program

Translation validation: Main components
Model builder

• Defines common semantics

• Captures the semantics of the source and compiled
programs

Analyzer

• Formalizes the notion of “correct implementation”

• Provides an automated proof method

• Generates a proof scripts or a counter-example

Translation validation: Features

• Avoiding redoing the proof with changes of compiler

• Independence of how the compiler works

• Less to prove (in general, the validator is much more
simple than the compiler)

• Verification process is fully automated

Signal compiler

• Syntax and type checking

• Clock analysis

• Data dependency analysis

• Executable code generation

Objective

A method to formally verify the Signal compiler that
satisfies:

• Light weight

• Scalable: deals with 500K lines of code of the
implementation

• Modularity

• Accuracy: the proof is separated w.r.t the data
structure (clock, data dependency, value-equivalence)

Approach

• Adopt translation validation approach

• Prove the correctness of each phase w.r.t the data
structure carrying the semantics relevant to that phase

• Decompose the preservation of the semantics into the
preservation of clock semantics, data dependency,
and value-equivalence

Formally verified Signal compiler

Formally verified Signal compiler

Formally verified Signal compiler

Signal language

• Signal x: sequences of typed values (is
absence)

• Clock of x: instants at which

• Process: set of equations representing relations
between signals

• Parallelism: processes run concurrently

• Example:

• Other languages: Esterel, Lustre, Scade, …

x(t), t 2 N ?

C
x

x(t) 6= ?

y := x+ 1, 8t 2 Cy, y(t) = x(t) + 1

Primitive operators

• Stepwise functions:

• Delay:

• Merge:

y := f(x1, ..., xn)

8t 2 C

y

, y(t) = f(x1(t), ..., xn

(t)), C
y

= C

x1 = ... = C

xn

y := x$1 init a

y(t0) = a, 8t 2 C

x

^ t > t0, y(t) = x(t�), Cy

= C

x

y := x default z

y(t) = x(t) if t 2 C

x

, y(t) = z(t) if t 2 C

z

\ C
x

,

C
y

= C
x

[C
z

Primitive operators

• Sampling:

• Composition:

 Denotes the parallel composition of two processes

• Restriction:

 Specifies that x as a local signal to P

y := x when b

8t 2 C

x

\ C

b

^ b(t) = true, y(t) = x(t), C
y

= C

x

\ [b]

P1|P2

P where x

Example

• Emits a sequence of values

• Execution traces

FB, FB� 1, ..., 1

Preservation of clock semantics

Clock model

�(b := b1 and b2) = (bb , bb1 , bb2) ^ (bb) (eb , eb1 ^ eb2))

Encodes the clock

Encodes the value

�(e := e1 + e2) = (be , cvi+ , be1 , be2) ^ (be) (ee = fvi+))

Uninterpreted functions

�(P) =
n̂

i=1

�(eqi)

Clock model of P

Clock refinement

• Clock event: A clock event is an interpretation over X.
The set of clock events denoted by

• Clock trace: A clock trace is a chain of
clock events. The concrete clock semantic of is
a set of clock trace denoted by

• Clock refinement:

EcX

Tc : N �! EcX

�(C) vclk �(A) on X i↵

�(P)
�(�(P))\X

8X.Tc.(X.Tc 2 �(�(C))\X) X.Tc 2 �(�(A))\X)

Proof method

• Define a variable mapping

• Given , prove ↵
�(C) vclk �(A) on XIO

dXA \ dXIO = ↵(dXC \ dXIO)

dXA \ dXIO = ↵(dXC \ dXIO)

8ˆI over

dXA [dXC .(ˆI |= �(C)) ˆI |= �(A))

�(C) vclk �(A) on XIO

Premise

Conclusion

Implementation with SMT

• Construct and

• Establish

• Check the validity

�(A) �(C)

' = �(C) ^dXA \ dXIO = ↵(dXC \ dXIO)) �(A)

|= '

Preservation of data dependency

Synchronous data-flow dependency graph (SDDG)

• Data dependency is represented as a labeled directed
graph

• Nodes are signals or clocks

• Edges express the dependencies among signals and
clocks

• Clock constraints are first-order logic formulas to label
the edges

• A dependency is effective iff its clock constraint has
the value true

Dependency refinement

SDDG(C) is a dependency refinement of SDDG(A) if:

• For every path dp1 in SDDG(A), there exits a path dp2
in SDDG(C) such that dp2 is a reinforcement of dp1

• For every path in dp1 SDDG(A), for any path dp2 in
SDDG(C), dp2 is deadlock-consistent with dp1

Implementation with SMT

• Construct SDDG(A) and SDDG(C)

• Establish the formulas for checking the reinforcement
and deadlock-consistency

• Check the validity of the checking formulas

Preservation of value-equivalence

Synchronous data-flow value-graph (SDVG)

• Signal and clock computation is represented as a
labeled directed graph

• Nodes are clocks, signals, variables, operators, or
gated -node function

• Edges describe the computation relation between the
nodes

• The computation of both Signal program and
generated C code is represented by a shared graph

SDVG translation validation: Normalizing

Objective

• Prove that for every output signal x and its corresponding
variable xc, they have the same value

Principle

• Define a set of rewrite rules

• Apply the rewrite rules to each graph node individually

• When there is no more rules can be applied to resulting graph,
maximized the shared nodes

• Terminate when there exists no more sharing or rewrite rules can
be applied

Detected bugs: Multiple constraints on a clock

Cause: The synchronization
between CLK and XZX_24

In P_BASIC_TRA, x might be
absent when XZX_24 is absent,
which is not the case in P and
P_BOOL_TRA

XZX_24 is introduced without
declaration

Detection:
�(P BOOL TRA) 6vclk �(P BASIC TRA)

Detected bugs: XOR operator

Cause: wrong implementation of
XOR operator

In P_BASIC_TRA, true xor true is
true

Detection:
�(P BASIC TRA) 6vclk �(P)

Detected bugs: Merge with constant signal

Cause: wrong implementation of
merge operator with constant signal

In the generated C code, a syntax
error y = 1; else y = x;

Detection: when constructing the
SDVG graph

Conclusion

A method to formally verify the Signal compiler

• Adopts the translation validation

• Is light-weight, scalable, modular

• Separates the proof into three smaller and
independent sub-proofs: clock semantic, data
dependency, and value-equivalence preservations

Future work

• Fully implementation of the validator: benchmarks and
integration into Polychrony toolset

• Extended the proof to use with the other code
generation schemes (e.g., modular and distributed
code generations)

• Use an SMT solver to reason on the rewrite rules in
SDVG transformations

Thank you!

