
Front. Comput. Sci., 2013, 7(5): 598–616

DOI 10.1007/s11704-013-3910-8

Formal verification of synchronous data-flow program
transformations toward certified compilers

Van Chan NGO 1, Jean-Pierre TALPIN1, Thierry GAUTIER1,
Paul Le GUERNIC1, Loïc BESNARD2

1 INRIA Rennes-Bretagne Atlantique, Rennes 35042, France

2 IRISA/CNRS, Rennes 35042, France

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Abstract Translation validation was invented in the 90’s by

Pnueli et al. as a technique to formally verify the correctness

of code generators. Rather than certifying the code generator

or exhaustively qualifying it, translation validators attempt to

verify that program transformations preserve semantics. In

this work, we adopt this approach to formally verify that the

clock semantics and data dependence are preserved during

the compilation of the Signal compiler. Translation valida-

tion is implemented for every compilation phase from the

initial phase until the latest phase where the executable code

is generated, by proving the transformation in each phase of

the compiler preserves the semantics. We represent the clock

semantics, the data dependence of a program and its trans-

formed counterpart as first-order formulas which are called

clock models and synchronous dependence graphs (SDGs),

respectively. We then introduce clock refinement and depen-

dence refinement relations which express the preservations of

clock semantics and dependence, as a relation on clock mod-

els and SDGs, respectively. Our validator does not require

any instrumentation or modification of the compiler, nor any

rewriting of the source program.

Keywords formal verification, translation validation, certi-

fied compiler, multi-clocked synchronous programs, embed-

ded systems.

Received February 28, 2013; accepted June 2, 2013

E-mail: chan.ngo@inria.fr

1 Introduction

The synchronous languages such as Esterel, Lustre, and Sig-

nal [1–3] have been introduced and successfully used to de-

sign and implement embedded and critical real-time sys-

tems. They have associated compilers, which transform, op-

timize, and generate code in some general-purpose program-

ming language. Their compilation involves many analyzes,

and program transformations. Some transformations may in-

troduce additional information or constraints, to refine the

meaning, and/or specialize the behavior of the original pro-

gram, such as optimization or static scheduling. Thus, the

complexity of these compilers increases the risk that their

large-scale use may yield bugs. In a safety-critical frame-

work, it is naturally required that the compiler must be for-

mally verified as well to ensure that the source program se-

mantics is preserved.

To circumvent compiler bugs, one can entirely rewrite the

compiler with a theorem proving tool such as Coq [4], or

check that it is compliant to DO-178C documents [5]. How-

ever, these solutions yield a situation where any change of the

compiler (e.g., further optimization and update) means redo-

ing the proof. Another approach, which provides ideal sepa-

ration between the tool under verification and its checker, is

trying to verify that the output and the input have the same

semantics. In this aim, translation validation was introduced

in the 90’s by Pnueli et al. [6,7], as a technique to formally

verify correctness of code generators. Translation validators

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 599

can be used to ensure that program transformations do not

introduce semantic discrepancies, or to help debugging the

compiler implementation. Some other works have adopted

the translation validation approach in verification of trans-

formations, and optimizations. In [8,9], the programs before

and after the transformations and optimizations of a C com-

piler are represented in a common intermediate form, then

the preservation of semantics is checked by using symbolic

execution and the Coq proof assistant.

A compiler generally involves several phases during its

compilation process. For instance, the Signal compiler, in

its first two phases: calculates the clock information, makes

Boolean abstraction, and makes static scheduling. The final

phase is the executable code generation. One can try to prove

globally that the input program and its final transformed pro-

gram have the same semantics. However, we believe that a

better approach consists in separating the concerns and prov-

ing for each phase the preservation of different kinds of se-

mantic properties. In this case of the Signal compiler, the

preservation of the semantics can be decomposed into the

preservation of clock semantics, data dependence, and value-

equivalence of variables. As first contribution to this work,

this paper focuses on proving the preservation of clock se-

mantics in the first phases of the Signal compiler. The preser-

vation of clock semantics described in the present contribu-

tion will be used to verify the value-equivalence between

data-flows in the source program and its generated code.

Thanks to clock semantics preservation, the evaluation of a

normalizing value-graph [10], used for that purpose, will be

more efficient and faster. Moreover, the encoding of clock in-

formation considered here will be reused in order to represent

the dependence graph of the synchronous programs for study-

ing the preservation of data dependence which is considered

as the other contribution of this work.

The clock semantics of the source program and its trans-

formed counterpart are formally represented as clock mod-

els. A clock model is a first-order logic formula with uninter-

preted functions. This formula deterministically characterizes

the presence/absence status of all discrete data-flows (input,

output and local variables of the program) manipulated by

the specification at a given instant. Given two clock models,

a correct transformation relation between them is defined,

which expresses the semantic preservation of clock informa-

tion. In the implementation, we apply our translation valida-

tion to the first two transformation steps of the compiler.

With the similar approach, the dependence in the source

program and its transformed counterpart is represented by

the formal structure, called synchronous dependence graph

(SDG). A SDG for a given program is a labelled directed

graph in which each node is a signal or a clock and each edge

represents a dependence between nodes. Each edge is labeled

by a clock expression called clock constraint at which the

dependence between two extremity nodes is effective. Given

two SDGs, a correct transformation relation between them is

defined which expresses the semantic preservation of data de-

pendence. In implementation, an SMT (satisfiability modulo

theory)-solver is used for checking the existence of the cor-

rect transformation relations. We apply this validation to the

second transformation steps of the compiler, static schedul-

ing.

At a high level, our tool works as follows. For each trans-

formation, it takes the input program and its transformed

counterpart, and constructs the corresponding clock models,

SDGs. Then it delegates the existence checking of the cor-

rect transformation relation to a solver. If the result is that the

relation does not exist then a “compiler bug” message is emit-

ted. Otherwise, the compiler continues its work. We believe

that our validator must have the following features to be ef-

fective and realistic. First, we do not modify or instrument

the compiler, and we treat the compiler as a “black box”.

Hence the validator is not affected by some future update or

modification of the compiler. We only need some additional

information about the mapping between original names and

potential new names of local variables. Our approach con-

sists in applying formal methods to the compiler transforma-

tions themselves in order to automatically generate formal

evidence that the clock semantics of the source program is

preserved during program transformations, as per applicable

qualification standard. Second, it is important that the val-

idator can be scaled to large programs. For this purpose, we

represent the desired program semantics using a scalable ab-

straction and we use efficient SMT libraries [11] to achieve

the expected goals: traceability and formal evidence. More-

over, this approach provides an attractive alternative to de-

velop a certified compiler for a synchronous language. Since

in general the validator is much smaller and easier to verify

than the compiler it validates.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the Signal language. Section 3 presents the

abstraction that represents the clock constraints in terms of

first-order logic formulas. The definition and properties of

SDGs are detailed in Section 4. In Section 5, we consider

the definitions of correct transformation on clocks and SDGs

which formally prove the conformance between the original

specification and its compiled counterpart w.r.t. the clock se-

mantic and the data dependence. It also addresses the appli-

600 Front. Comput. Sci., 2013, 7(5): 598–616

cation of the verification process to the Signal compiler, and

its integration into the Polychrony toolset [12] in Section 6.

Section 7 presents some related works, concludes our work

and outlines future directions.

2 The Signal language

Signal [13,14] is a polychronous data-flow language that al-

lows the specification of multi-clocked systems. Signal han-

dles unbounded series of typed values (x(t))t∈N , called sig-

nals, denoted as x. Each signal is implicitly indexed by a log-

ical clock indicating the set of instants at which the signal is

present, noted Cx. At a given instant, a signal may be present

where it holds a value, or absent (denoted by #).

2.1 Language features

Syntax In Signal, a process (written P or Q) consists of the

synchronous composition (noted P|Q) of equations over sig-

nals x, y, z, written x := y f z or x := f (y, z). The process P/x

restricts the lexical scope of the signal x to the process P. An

equation x := y f z defines the output signal x by the result of

the application of operator f to its inputs y, z.

P,Q ::= x := y f z | P|Q | P/x.

Semantic domains For a set of values (a type) D we define

its extended set D# = D ∪ {#}, where # � D is a special sym-

bol used to denote the absence of an occurrence in the signal.

D# is flat. We denote by D∞ = D∗ ∪ Dω the set of finite and

infinite sequences of “values” in D#. ε denotes the empty se-

quence. All signal functions f : D∞1 ×· · ·×D∞n → D∞n+1 are de-

fined using the following conventions: x, y, z, . . . are signals,

v1, v2, . . . , vn are values in Di (cannot be #), v#
1, . . . , v

#
n are val-

ues in Di# , and x.y is the concatenation of two sequences x

and y. Signal functions are total, strict and continuous func-

tions over domains [15] (w.r.t prefix order) that satisfy the

following general rules:

• f (#.x1, x2, . . . , #.xn) = #. f (x1, . . . , xn),

• f (x1, x2, . . . , xn) = ε when for some i, xi = ε.

A function is synchronous iff it satisfies:

• f (v#
1.x1, . . . , v#

n.xn) = ε when v#
i = # and v#

j � # for

some i, j

Stepwise extension (y := f (x1, x2, . . . , xn)). Given n > 0 and

a n-ary total function f : D1 × . . . × Dn → Dn+1, the step-

wise extension of f denoted F is the synchronous function

that satisfies:

• F(v1.x1, v2, x2, . . . , vn.xn) = f (v1, v2, . . . , vn).F(x1,

x2, . . . , xn).

Previous value (y := x$1 init a). The $: Di × D∞i → D∞i is

the synchronous (state) function that satisfies

• $(v−1, v.x) = v−1.$(v, x).

Deterministic merge (y := x default z). The default:

D∞i# × D∞i# → D∞i# signal function is recursively defined by

• for v ∈ Di, default(v.x, v#.z) = v.default(x, z),

• default(#.x, v#.z) = v#.default(x, z).

Boolean sampling (y := x when b). The when: D∞i# × B∞# →
D∞i# signal function is recursively defined by

• for b# ∈ B#, b# � true when(v#.x, b#.b) = #.when(x, b).

• when(v#.x, true.b) = v#.when(x, b).

A network of strict, continuous signal functions that satis-

fies the Kahn conditions is a strict, continuous signal function

or Kahn process network [16].

Clock relations In addition, the language allows clock con-

straints to be defined explicitly by some derived operators that

can be replaced by primitive operators above. For instance, to

define the clock of a signal (represented as an event type sig-

nal), y := x̂ specifies that y is the clock of x; it is equivalent to

y := (x = x) in the core language. The synchronization x ˆ= y

means that x and y have the same clock, it can be replaced by

x̂ = ŷ. The clock extraction from a Boolean signal is denoted

by a unary when: when b, that is a shortcut for b when b. The

clock union x ˆ+ y defines a clock as the union Cx∪Cy, which

can be rewritten as x̂ default ŷ. In the same way, the clock in-

tersection x ˆ∗ y and the clock difference x ˆ− y define clocks

Cx ∩Cy and Cx \Cy, which can be rewritten as x̂ when ŷ and

when (not (̂y) default x̂), respectively.

Example The following Signal program emits a sequence of

values FB, FB− 1, . . . , 2, 1, from each value of a positive in-

teger signal FB coming from its environment:

process DEC =

(? integer FB;

! integer N)

(| FB̂= when (ZN � 1)

| N := FB default (ZN − 1)

| ZN := N$1 init 1

|)

where integer ZN init 1

end,

Let us comment this program: ? integer FB; ! integer

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 601

N: FB,N are respectively input and output signals of type

integer; FB ˆ = when (ZN � 1): FB is accepted (or it

is present) only when ZN becomes less than or equal to 1;

N := FB default (ZN − 1): N is set to FB when its previous

value is less than or equal to 1, otherwise it is decremented

by 1; ZN := N$1 init 1: defines ZN as always carrying the

previous value of N (the initial value of ZN is 1); where inte-

ger ZN init 1: indicates that ZN is a local signal whose initial

value is 1. Note that the clock of the output signal is more

frequent than that of the input. This is illustrated in the fol-

lowing possible trace:
t

FB 6 # # # # # 3 # # 2

ZN 1 6 5 4 3 2 1 3 2 1

N 6 5 4 3 2 1 3 2 1 2

CFB t0 t6 t9

CZN t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
CN t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Program structure The language is modular. In particular,

a process can be used as a basic pattern, by means of an in-

terface that describes its parameters and its input and out-

put signals. Moreover, a process can use other subprocesses,

or even external parameter processes that are only known by

their interfaces. For example, to emit three sequences of val-

ues (FBi − 1), . . . , 2, 1 for all three positive integer inputs

FBi, with i = 1, 2, 3, one can define the following process (in

which, without additional synchronizations, the three subpro-

cesses have unrelated clocks):

process 3DEC=

(? integer FB1, FB2, FB3;

! integer N1, N2, N3)

(| N1 := DEC(FB1)

| N1 := DEC(FB2)

| N3 := DEC(FB3)

|)

end.

2.2 Clock constraints and dependence

The above basic processes induce implicitly the clock con-

straints and dependence between the signals. Table 1 shows

these clock constraints for the primitive operators. In this ta-

ble, the sub-clock [c] (resp. [¬c]) is defined as {t ∈ Cc|c(t) =

true} (resp. {t ∈ Cc|c(t) = false}). Notice that a clock can be

viewed as a signal with type event (which has only one value,

true, when it is present), thus the condition Cc means that

the signal c is present.

Let x, y be two signals and c an event or Boolean signal, if

at any instant t such that t ∈ Cx ∩ Cy ∩ Cc and c(t) = true,

setting a value to y cannot precede the availability of x, then

we say that y depends on x at the condition c. We use x
c−→ y

to denote the fact that there is a dependence between y and

x at the condition c. Table 1 shows the dependence for the

core language. In particular, the following dependence ap-

plies equally: 1© any signal is preceded by its clock; 2© for

a Boolean signal c, [c] and [¬c] depend on c; 3© any depen-

dence x
c−→ y implies implicitly a dependence [c]

Cc−−→ y.

Table 1 The clock constraints and dependence

Dependence Clock constraint

x Cx
Cx−−→ x

c (Boolean signal)
c

Cc−−→ [c]

c
Cc−−→ [¬c]

x
c−→ y [c]

Cc−−→ y

y := f (x1 , . . . , xn)
x1

Cy
−−→ y Cy = Cx1

.

xn
Cy
−−→ y Cy = Cxn

y := x$1 init a y
Cy
−−→ x Cy = Cx

y := x when b
x

Cy
−−→ y

Cy = Cx ∩ [b]

b
Cy
−−→ Cy

y := x default z
x

Cx−−→ y
Cy = Cx ∪Cz

z
Cz\Cx−−−−−→ y

As an example, for the basic process corresponding to the

primitive operator Boolean sampling, the clock constraints

and dependence between signals are given by:

• The clock of y is the intersection of the clock of x and

the sub-clock [b];

• The signal y depends on the signal x whenever y is

present;

• The clock Cy depends on the Boolean signal b whenever

y is present.

2.3 Compilation of Signal programs

The Signal compiler [17] consists of a sequence of code

transformations. Some transformations are optimizations that

rewrite the code to eliminate inefficient expressions. The

compilation process may be seen as a sequence of morphisms

rewriting Signal programs to Signal programs. The final steps

(C or Java code generation) are simple morphisms over the

ultimately transformed program. For convenience, the trans-

formations of the compiler are divided into three phases as

depicted in Fig.1. The optimized final program *_SEQ_TRA

602 Front. Comput. Sci., 2013, 7(5): 598–616

Fig. 1 The compilation of Signal compiler

is translated directly to executable code. Signal programs

which are produced in the first two phases (clock calculation,

Boolean abstraction and static scheduling) have the follow-

ing features:

• The transformed programs are also written in Signal

language;

• The clocks of all signals have been calculated and the

overall set of clocks is organized as a clock hierarchy

which is a set of clock trees [17]. When there is a single

clock tree, the process has a fastest rated clock and it is

said endochronous. When there are several clock trees,

the process may be endochronized with an explicit pa-

rameterization, adding a fastest clock, Tick;

• In the successive transformations of the compiler,

clocks are first represented as event signals related

through clock specific Signal operators (this is re-

flected in the *_BASIC_TRA intermediate form);

then clocks are transformed into Boolean signals de-

fined with Boolean operators (this is reflected in the

*_BOOL_TRA intermediate form);

• The scheduling information is represented in the

*_SEQ_TRA intermediate form;

• The arithmetic expressions are left intact.

As an example, the body of the intermediate form

DEC_BASIC_TRA obtained by compiling the above DEC

process is as follows:

(| CLK := CLK_N −̂ CLK_FB |)

(| CLK_N:=CLK_N +̂ CLK_FB

| CLK_N ˆ= N ˆ= ZN

| (| N := (FB when CLK_FB)

default ((ZN-1) when CLK)

| ZN := N$1 init 1

|)

| (| CLK_FB := when (ZN � 1)

| CLK_FB ˆ= FB

| CLK_12 := when (not (ZN � 1))

|)

|)

3 Clock models

In this section, we describe the timing semantics of a program

in terms of a first-order logic formula. Let us consider the se-

mantics of the sampling operator y := x when b. At any in-

stant, the signal y holds the value of x if the following condi-

tions are satisfied: x holds a value, and b is present and holds

the value true; otherwise, it holds no value. Thus, to repre-

sent the underlying control conditions, we need to model the

statuses present with value true or false and absent for

the signal b, and the statuses present and absent for the sig-

nal x. This section explores a method to construct the control

model of a program as an abstraction of the clock semantics,

called clock model, which is the computational model of our

translation validation approach.

3.1 Illustrative example

In Signal, clocks play a much more important role than in

other synchronous languages, they are used to express the

underlying control (i.e., the synchronization between signals)

for any conditional definition. This differs from Lustre, where

all clocks are built by sampling the fastest clock. For in-

stance, we consider again the basic process corresponding to

the primitive operator Boolean sampling, where x and y are

numerical signals, and b is a Boolean signal: y := x when b.

To express the control, we need to represent the status of the

signals x, y and b at a given instant. In this example, we use

a Boolean variable x̂ to capture the status of x: (x̂ = true)

means x is present, and (x̂ = false) means x is absent. In the

same way, the Boolean variable ŷ captures the status of y. For

the Boolean signal b, two Boolean variables b̂ and b̄ are used

to represent its status: (b̂ = true∧ b̄ = true) means b is present

and holds a value true; (b̂ = true ∧ b̄ = false) means b is

present and holds a value false; and (b̂ = false) means b is

absent.

Hence, at a given instant, the implicit control relations of

the basic process above can be encoded by the following for-

mula:

ŷ⇔ (x̂ ∧ b̂ ∧ b̄).

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 603

3.2 Abstraction

Let X = {x1, x2, . . . , xn} be the set of all signals in program

P. With each signal xi, we attach a Boolean variable x̂i to en-

code its clock and a variable xi of same type as xi to encode

its value. Formally, the abstract values which represent the

clock semantics of the program can be computed using the

following functions:

ˆ : X −→ B associates a signal with a Boolean value;

:̄ X −→ D associates a signal with a value of same

type as the signal.

The composition of Signal processes corresponds to logi-

cal conjunctions. Thus clock model of P will be a conjunc-

tion Φ(P) =
∧n

i=1 φ(eqi) whose atoms are x̂i, xi, where φ(eqi)

is the abstraction of statement eqi (statement using the Sig-

nal primitive operators), and n is the number of statements

in the program. In the following, we present the abstraction

corresponding to each Signal operator.

3.2.1 Stepwise extensions

The functions which apply on signal values in the primitive

stepwise extensions are usual logic operators (not, and, or),

numerical comparison functions (<, >,=,�,�, / =), and nu-

merical operators (+,−,×, /). In our experience working with

the Signal compiler, it performs very few arithmetical op-

timizations and leaves most of the arithmetical expressions

intact. Every variable is determinable by the inputs, memo-

rizable values, otherwise program can not be compiled. This

suggests that most of the implications will hold indepen-

dently of the features of the numerical comparison functions

and numerical operators and we can replace the operations

by uninterpreted functions. By following the encoding pro-

cedure of [18], for every numerical comparison functions and

numerical operator (denoted by �) occurring in an equation,

we perform the following rewriting:

• Replace each x � y by a new variable vi
� of a type equal

to that of the value returned by �. Two stepwise func-

tions x � y and x′ � y′ are replaced by the same variable

vi
� iff x, y are identical to x′ and y′, respectively.

• For every pair of newly added variables vi
� and v j

�, i � j,

corresponding to the non-identical occurrences x � y

and x′ � y′, add the implication (x = x′ ∧ y = y′) ⇒
vi
� = v j

� into the abstraction Φ(P).

The abstraction φ(y := f (x1, . . . , xn)) of stepwise functions

is defined by induction as follows:

• φ(true) = true and φ(false) = false;

• φ(y := x) = (ŷ ⇔ x̂) ∧ (ŷ ⇒ (ȳ ⇔ x̄)) if x and y are

Boolean. φ(y := x) = (ŷ⇔ x̂)∧(ŷ⇒ (ȳ⇔ x̄))∧(x̂⇒ x̄)

if x is an event signal;

• φ(y := x1 and x2) = (ŷ ⇔ x̂1 ⇔ x̂2) ∧ (ŷ ⇒ (ȳ ⇔
x1 ∧ x2));

• φ(y := x1 or x2) = (ŷ ⇔ x̂1 ⇔ x̂2) ∧ (ŷ ⇒ (ȳ ⇔
x1 ∨ x2));

• φ(y := x1 � x2) = (ŷ ⇔ ̂vi
� ⇔ x̂1 ⇔ x̂2) ∧ (ŷ ⇒ (ȳ =

vi
�)).

3.2.2 Previous value

Considering the previous value operator, y := x$1 init a, its

encoding φ(y := x$1 init a) contributes to Φ(P) with the fol-

lowing conjunct:

• if x, y and a are Boolean:

(ŷ⇔ x̂)

∧ (ŷ⇒ ((ȳ⇔ m.x) ∧ (m.x′ ⇔ x̄)))

∧ (m.x0 ⇔ a);

• if x, y and a are non-Boolean:

(ŷ⇔ x̂).

This encoding requires that at any instant, signals x and

y have the same status (present or absent). If the signals are

Boolean, it encodes the value of the output signal as well.

Here, we introduce a memorization variable m.x that stores

the last value of x. The next value of m.x is m.x′ and it is

initialized to a in m.x0.

3.2.3 Deterministic merge

The encoding of the deterministic merge operator, y := x de-

fault z, contributes to Φ(P) with the following conjunct:

• if x, y and z are Boolean:

(ŷ⇔ (x̂ ∨ ẑ))

∧ ŷ⇒ ((x̂ ∧ (ȳ⇔ x̄))

∨ (¬x̂ ∧ (ȳ⇔ z̄))));

• if x, y and z are non-Boolean:

ŷ⇔ (x̂ ∨ ẑ).

3.2.4 Boolean sampling

The encoding of the Boolean sampling operator, y :=

x when b, contributes to Φ(P) with the following conjunct:

• if x and y are Boolean:

(ŷ⇔ (x̂ ∧ b̂ ∧ b̄))

604 Front. Comput. Sci., 2013, 7(5): 598–616

∧ (ŷ⇒ (ȳ⇔ x̄));

• if x and y are non-Boolean:

ŷ⇔ (x̂ ∧ b̂ ∧ b̄).

3.2.5 Composition

Consider the composition of two processes P1 and P2. Its

abstraction φ(P1|P2) is defined as follows:

• φ(P1) ∧ φ(P2).

3.2.6 Clock relations

Given the above rules, we can obtain the following abstrac-

tion for derived operators on clocks. Here, z is a signal of type

event:

• φ(z := x̂) = (ẑ⇔ x̂) ∧ (ẑ⇒ z̄);

• φ(x ˆ= y) = x̂ ⇔ ŷ;

• φ(z := x ˆ+ y) = (ẑ⇔ (x̂ ∨ ŷ)) ∧ (ẑ⇒ z̄);

• φ(z := x ˆ∗ y) = (ẑ⇔ (x̂ ∧ ŷ)) ∧ (ẑ⇒ z̄);

• φ(z := x ˆ− y) = (ẑ⇔ (x̂ ∧ ¬ŷ)) ∧ (ẑ⇒ z̄);

• φ(z := when b) = (ẑ⇔ (b̂ ∧ b̄)) ∧ (ẑ⇒ z̄).

3.2.7 Nested processes

Assume that a process P has a sub-process P1, the abstraction

Φ(P) is given by:

• φ(P) ∧ φ(P1);

• For every equation in process P that involves an in-

vocation of a sub-process such as (y1, . . . , yn) :=

P1(x1, . . . , xm), the following conjuncts are added,

where ih, ok are the inputs and outputs of P1:
∧n

k=1(ŷk ⇔ ôk ∧ yk ⇔ ok) ∧
∧m

h=1(x̂h ⇔ ̂ih ∧ xh ⇔ ih).

Applying the abstraction rules above, the clock semantics

of the Signal program DEC is represented by the following

first-order logic formula Φ(DEC), where ZN � 1 is replaced

by v1
� and ZN − 1 is replaced by v1

−.

(̂FB⇔ ̂v1
� ∧ v1

�)

∧ (̂v1
� ⇔ ̂ZN)

∧ (̂ZN ⇔ ̂N)

∧ (̂N ⇔ ̂FB ∨ ̂v1
−)

∧ (̂v1
− ⇔ ̂ZN)

3.3 Concrete clock semantics

Let XB ⊆ X be the set of all Boolean or event signals. We

rely on the basic elements of trace semantics [19] to define

the clock semantics of a synchronous program.

Definition 1 (Clock events) Given a non-empty set X, the

set of clock events on X, denoted by EcX , is the set of all pos-

sible interpretations I for X and I for XB. The interpretations

I, I are respectively mappings from Xn to Bn and from Xm
B to

Bm, where I(x) = true if x holds a value while I(x) = false

if it holds no value; and I(x) = true if x holds the value true,

I(x) = false, otherwise.

For example, consider a program whose variables are X =

{x, b} where b is Boolean variable, the set of clock events

is EcX = {(x �→I false, b �→I false, b �→I false), (x �→I

fa-lse, b �→I true, b �→I false), (x �→I false, b �→I true, b �→I

true), (x �→I true, b �→I false, b �→I false), (x �→I true, b �→I

true, b �→I false), (x �→I true, b �→I true, b �→I true)}. Then at

a given instant, the signals clock information is one of these

clock events. By convention, the set of clock events of the

empty set is defined as the empty set Ec∅ = ∅.

Definition 2 (Clock traces) Given a non-empty set X, the

set of clock traces on X, denoted by T cX , is defined by the

set of functions Tc defined from the set N of natural numbers

to EcX , denoted by Tc : N −→ EcX .

The natural numbers represent the instants t = 0, 1, 2,

A trace Tc is a chain of clock events. We denote the inter-

preted value (true or false) of a variable xi at instant t

by Tc(t)(xi), and Tc(t)(xi) if xi ∈ XB. Considering the above

example, we have Tc : (0, (x �→I false, b �→I false, b �→I

false)), (1, (x �→I false, b �→I true, b �→I false)), . . . as one of

the possible clock traces on X, and Tc(0)(x) = Tc(0)(b) =

Tc(0)(b) = false.

Definition 3 (Clock trace restriction) Given a non-empty

set X, a subset X1 ⊆ X, and a clock trace Tc being defined

on X, the restriction of Tc onto X1 is denoted by X1.Tc. It

is defined as X1.Tc : N −→ EcX1 such that ∀t ∈ N,∀x ∈
X1, X1.Tc(t)(x) = Tc(t)(x) and X1.Tc(t)(x) = Tc(t)(x) if x ∈
XB.

We write [[P]]c to denote the clock semantics of program

P which is defined as a set of possible clock traces.

Let X̂ = {x̂1, . . . , x̂n, x1, . . . , xn} ∪ ̂V ∪ V be a finite set of

variables that are used to construct the abstraction, where

V is a set of newly added variables in uninterpreted func-

tions replacement. Considering an interpretation Î over X̂, it

is called a clock configuration iff it is a model of the first-

order logic formula Φ(P). For example, (̂FB �→ false, ̂N �→

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 605

true, ̂ZN �→ true) is a clock configuration of Φ(DEC), but

(̂FB �→ false, ̂N �→ true, ̂ZN �→ false) is not one (we omit to

write the interpretation for other variables).

Given a clock configuration Î, the set of clock events ac-

cording to Î and the set of all clock events of Φ(P) are com-

puted as follows:

S sat(Î) = {I ∈ EcX | ∀i, I(xi) = Î(x̂i) (1)

and Ī(xi) = Î(xi) if xi ∈ XB}
S sat(Φ(P)) =

⋃

Î|=Φ(P)

S sat(Î). (2)

With a set of clock events S sat(Φ(P)), the concrete clock

semantics of Φ(P) is defined by the following set of clock

traces:

Γ(Φ(P)) = {Tc ∈ T cX | ∀t, Tc(t) ∈ S sat(Φ(P))}. (3)

3.4 Soundness of the abstraction

Tables 2 and 3 show the clock semantics of the primitive op-

erators with non-Boolean and Boolean signals, respectively.

For instance, the clock semantics of the basic process corre-

sponding to Boolean sampling is the following set of clock

traces:

Tc = {(0, (cx0 , cb0 , b0, cy0)), . . . , (i, (cxi , cbi , bi, cyi)), . . .} s.t

∀i, (cxi , cbi , bi, cyi) ∈ {(false, false, false, false),

(true, false, false, false), (false, true, false, false),

(false, true, true, false), (true, true, false, false),

(true, true, true, true)}

Definition 4 Given the abstraction Φ(P), a property ϕ de-

fined over the set of clocks X̂ is satisfied by Φ(P) if for any

interpretation Î, Î |= Φ(P) whenever Î |= ϕ, denoted by

Φ(P) |= ϕ.

To show the soundness of our abstraction, we consider a

similar reasoning as in [20]. Our abstraction above is sound in

terms of preservation of the clock semantics of the abstracted

program P: if the clock semantics of the abstraction satisfies

a property defined over the clocks, then the abstracted pro-

gram also satisfies this property as stated by the following

proposition. For any property ϕ which is defined over the set

X̂, its concretization Γ(ϕ) is given by:

S sat(ϕ) =
⋃

Î |=ϕ

S sat(Î), (4)

Γ(ϕ) = {Tc ∈ T cX | ∀t, Tc(t) ∈ S sat(ϕ)}. (5)

Proposition 1 Let P, Φ(P) be a program and its abstrac-

tion, respectively, and ϕ is a property defined over the clocks.

If Φ(P) |= ϕ then [[P]]c ⊆ Γ(ϕ).

Table 2 Clock semantics of the basic processes

Process P Clock semantics [[P]]c

{Tc ∈ T c{y,x1 ,x2 ,...,xn } | ∀t ∈ N,
y := f (x1 , x2 , . . . , xn)

(∀i, Tc(t)(xi) = Tc(t)(y))}
{Tc ∈ T c{x,y} | ∀t ∈ N,

y := x$1 init a
(Tc(t)(x) = Tc(t)(y))}
{Tc ∈ T c{x,y,b} | ∀t ∈ N,

(Tc(t)(x) = Tc(t)(b) = true

and Tc(t)(b) = true

and Tc(t)(y) = true) or
y := x when b

(Tc(t)(x) = Tc(t)(b) = true

and Tc(t)(b) = false

and Tc(t)(y) = false) or

(Tc(t)(x) = Tc(t)(y) = f alse) or

(Tc(t)(b) = Tc(t)(y) = f alse)}
{Tc ∈ T c{x,y,z} | ∀t ∈ N,

(Tc(t)(x) = Tc(t)(y) = true) or
y := x default z

(Tc(t)(x) = false and

Tc(t)(z) = Tc(t)(y))}
{Tc ∈ T cX1∪X2 |

X1.Tc ∈ [[P1]]c and X2.Tc ∈ [[P2]]c}
P1 | P2

where [[P1]]c ⊆ T cX1 , [[P2]]c ⊆ T cX2

Lemma 1 For all programs P, [[P]]c ⊆ Γ(Φ(P)).

Proof (Proposition 1) The proof of Proposition 1 is done

by using Lemma 1. Given a clock trace Tc ∈ [[P]]c, applying

Lemma 1, Tc ∈ Γ(Φ(P)) means that ∀t, Tc(t) ∈ S sat(Φ(P)).

Since Φ(P) |= ϕ, then every interpretation Î satisfying Φ(P)

also satisfies ϕ. Thus, any clock event I ∈ S sat(Φ(P)) is also

in S sat(ϕ), meaning that ∀t, Tc(t) ∈ S sat(ϕ). Therefore, we

have Tc ∈ Γ(ϕ).

Proof (Lemma 1) We prove it by induction on the structure

of program P, meaning that for every primitive operator of

the language we show that its clock semantics is a subset of

the corresponding concretization.

• Stepwise extensions: P : y := f (x1, x2, . . . , xn). First,

consider y as numerical signal; following the encoding

scheme, we have Φ(P) = (ŷ ⇔ ̂vi
f ⇔ x̂1 ⇔ x̂2 ⇔

. . . ⇔ x̂n). For any interpretation Î such that Î |= Φ(P),

we have:

– either ∀i, ŷ = 0 and x̂i = 0;

– or ∀i, ŷ = 1 and x̂i = 1.

S sat(Φ(P)) is the set of all interpretations of the form

above. Let Tc ∈ [[P]]c be a clock trace and t ∈ N be

any instant, then either ∀i, Tc(t)(y) = Tc(xi) = 0 or

Tc(t)(y) = Tc(xi) = 1, thus Tc ∈ Γ(Φ(P)). When y is

a boolean signal, the proof is similar.

• Previous value, Boolean sampling, and deterministic

606 Front. Comput. Sci., 2013, 7(5): 598–616

merging operators: we prove in the same manner.

• Composition: P = P1|P2. Let Tc ∈ [[P]]c be a clock

trace, since X1.Tc ∈ [[P1]]c, X2.Tc ∈ [[P2]]c, [[P1]] ⊆
Γ(Φ(P1)) and [[P2]]c ⊆ Γ(Φ(P2)), we have ∀t, Tc(t) ∈
S sat(Φ(P1)) and Tc(t) ∈ S sat(Φ(P2)). That means

∀t, Tc(t) ∈ S sat(Φ(P1) ∧ Φ(P2)), or Tc ∈ Γ(Φ(P)). �

4 Synchronous dependence graphs

The SDG represents a synchronous program as a labelled di-

rected graph in which each node is a signal or a clock and

each edge from a node to another node represents the depen-

dence between nodes. Each edge is labeled by a clock con-

straint.

Thus, a dependence between two signals is conditioned: it

means that the dependence is effective whenever the condi-

tion holds. For instance, y := x when b specifies that at any

instant at which x is present, b is present and b holds the value

true, then y cannot be set before x. We can use a Boolean

condition x̂ ∧ b̂ ∧ b̄ to encode the fact that x is present, b is

present and b holds the value true, where x̂, b̂, b̄ are Boolean

variables. Thus, the value of y depends on the current value

of x whenever the condition x̂ ∧ b̂ ∧ b̄ is satisfied.

In presenting the construction of a SDG below, first, we

show that a usual data dependence graph (DDG) is not suf-

ficient to represent the dependences in a polychronous pro-

gram. Then clock constraints are represented as first-order

logic formulas as in Section 4.

4.1 Data dependence graphs

As in [21], a DDG is a directed graph which contains nodes

that represent locations of definitions and uses of variables

in basic blocks, and edges that represent data dependences

between nodes. Considering the pseudo-code of a program

called Sum, Fig.2 partially shows its DDG (the figure shows

only the data dependences that are related to variable i). Data

dependence edges are depicted by dotted lines which are

added to the control flow graph (CFG), and labelled by the

name of the variable that creates the dependence. Node num-

bers in the CFG correspond to statement numbers in the pro-

gram (we treat each statement as a basic block). Each node

that represents a transfer of control (e.g., Node 4) has two

edges with labels T (true) and F(false), all others are unla-

beled.

4.2 Signal program as SDG

Such data dependence graphs would not really represent the

Fig. 2 CFG for Sum, with data dependence edges for i (dotted lines)

data dependences of a Signal program. Indeed, the depen-

dences between signals in the program are not static. Since

the presence of signals may vary along time (which is ex-

pressed by their clock), dependences also vary. To deal with

that, the dependences are conditioned, and the conditions are

represented by the clocks at which the dependences are effec-

tive.

To illustrate the definition of SDGs, we consider a process

which involves the basic process corresponding to the deter-

ministic merge operator:

(|

1. | x := expression

2. | z := expression

3. | . . .

4. | y := x default z

|)
Here, the numbers are added only for documenting, and

the statement Number 3 denotes a segment of program. The

statements 1, 2 and 4 represent the expressions defining the

signal x, z and y, respectively. Roughly speaking, the signal x

is defined at statement 1 and is fetched at Statement 4. Con-

sidering the basic process y := x default z (and the clock con-

straints between signals), the “valid” states are: x is present

and y is present; or x is absent, z is present, and y is present; or

x, y and z are absent. They can be represented by ŷ⇔ (x̂ ∨ ẑ)

in our Boolean abstraction. According to the valid states of

the signals, the different data dependences between signals

in the basic process y := x default z are depicted in Fig. 3,

left, where the labels represent the conditions at which the

dependences are effective. For instance, when x̂ = true, y

is defined by x; otherwise it is defined by z when x̂ = false

and ẑ = true. We can see that the graph in this figure has the

following property: an edge cannot exist if one of its extrem-

ity nodes is not present (or the corresponding signal holds no

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 607

value). In our example, this property can be translated in the

Boolean abstraction of clock semantics as: x̂ ⇒ ŷ ∧ x̂ and

¬x̂ ∧ ẑ⇒ ŷ ∧ ẑ.

A SDG for a given program is a labelled directed graph in

which each node is a signal or clock variable and each edge

represents the dependence between nodes. Each edge is la-

belled by a first-order logic formula over Boolean variables

which represents the clock at which the dependence between

the extremity nodes is effective. Formally, a SDG is defined

as follows:

Definition 5 (SDG) A SDG associated with a process P is

a tuple G = 〈N, E, I,O,C,mN ,mE〉 where:

• N is a finite set of nodes, each of which represents the

equation defining a signal or a clock;

• E ⊆ N × N is the set of dependences between nodes;

• I ⊆ N is the set of input nodes;

• O ⊆ N is the set of output nodes;

• C is the set of Boolean formulas over a set of clocks in

the Boolean abstraction;

• mN : N −→ C is a mapping labelling each node with a

clock; it defines the existence condition of a node;

• mE : E −→ C is a mapping labeling each edge with a

clock constraint; it defines the existence condition of an

edge.

In contrast with DDG, the clock labelling in SDG provides

a dynamic dependence feature. This clock labelling imposes

two properties which are implicit for a SDG:

• An edge exists if its two extremity nodes exist. This prop-

erty can be translated in our Boolean abstraction as:

∀(x, y) ∈ E,mE(x, y)⇐ (mN(x) ∧mN(y)).

• A cycle of dependences stands for a deadlock. It can be

expressed as:

A SDG G is deadlock-free iff

∀x1, . . . , xn, x1 ∈ G,

mE(x1, x2) ∧ mE(x2, x3) ∧ . . . ∧ mE(xn, x1) is false.

We denote the fact that there exists a dependence between

two nodes (signals or clocks) x and y at a clock constraint

mE(x, y) = ĉ by x
ĉ−→ y. A dependence path from x to y is any

set of nodes s = {x0, x1, . . . , xk} such that (an edge is a special

case when k = 1):

x = x0
ĉ0−→ x1

ĉ1−→ . . .
ĉk−1−−−→ xk = y.

In Table 4, we construct the dependences between signals

for the core language, where the subclocks [c] and [¬c] are

encoded as ĉ ∧ c̄ and ĉ ∧ ¬c̄, respectively, in our abstraction.

The edges are labelled by clocks which are represented by a

Boolean formula in our abstraction. All the dependences in

this table impose the implicit properties for a SDG, for in-

stance, the basic process of the primitive operator Boolean

sampling satisfies that ŷ ⇒ x̂ ∧ ŷ and ŷ ⇒ b̂ ∧ ŷ. We also as-

sume that all considered programs are written with the primi-

tive operators, meaning that derived operators are replaced by

their definition with primitive ones, and there are no nested

operators (these nested operators can be broken by using

fresh signals). Following the above construction rules, we can

obtain the SDG in Fig. 3, right, for the simple program DEC

(we omit the part of graph that represents the dependences

between ZN2, ZN1 and ZN).

Table 3 Clock semantics of the basic processes with Boolean signals

Process P Clock semantics [[P]]c

{Tc ∈ T c{y,x1 ,...,xn } | ∀t ∈ N,

(∀i, Tc(t)(xi) = Tc(t)(y)) = false or
y := f (x1 , . . . , xn)

(∀i, Tc(t)(xi) = Tc(t)(y) = true and

Tc(t)(y) = f (Tc(t)(x1), . . . ,Tc(t)(xn)))}

{Tc ∈ T c{x,y} | ∀t ∈ N,

(Tc(t)(x) = Tc(t)(y)) or

(Tc(t)(x) = Tc(t)(y) = true and
y := x$1 init a

Tc(t0)(y) = a and

∀t � t0, Tc(t)(y) = Tc(t−)(x))

with t0 = in f {t′ |Tc(t′)(x) = true},

t− = sup{t′ |t′ < t ∧ Tc(t′)(x) = true}}

{Tc ∈ T c{x,y,b} | ∀t ∈ N,

(Tc(t)(x) = Tc(t)(b) = true

and Tc(t)(b) = true

and Tc(t)(y) = true and
y := x when b

Tc(t)(y) = Tc(t)(x)) or

(Tc(t)(x) = Tc(t)(b) = true

and Tc(t)(b) = false

and Tc(t)(y) = false) or

(Tc(t)(x) = Tc(t)(y) = false) or

(Tc(t)(b) = Tc(t)(y) = false)}

{Tc ∈ T c{x,y,z} | ∀t ∈ N,

(Tc(t)(x) = Tc(t)(y) = true and

Tc(t)(y) = Tc(t)(x)) or
y := x default z

(Tc(t)(x) = false and Tc(t)(y) = Tc(t)(z)

and Tc(t)(y) = Tc(t)(z))}

{Tc ∈ T cX1∪X2 |

X1.Tc ∈ [[P1]]c and X2.Tc ∈ [[P2]]c}
P1 | P2

where [[P1]]c ⊆ T cX1 , [[P2]]c ⊆ T cX2

608 Front. Comput. Sci., 2013, 7(5): 598–616

Table 4 The dependences of the core language

Cx
x̂−→ x

x
mN (Cx) = x̂,mN (x) = x̂

c
ĉ−→ [c]

mN (c) = ĉ,mN ([c]) = ĉ
c (Boolean signal)

c
ĉ−→ [¬c]

mN (c) = ĉ,mN ([¬c]) = ĉ

[c]
ĉ−→ y

x
c−→ y

mN ([c]) = ĉ,mN (y) = ŷ

x1
ŷ
−→ y

. . .
y := f (x1 , x2 , . . . , xn)

xn
ŷ
−→ y

mN (xi) = x̂i ,mN (y) = ŷ, i = 1, 2, . . . , n

y
ŷ
−→ x

y := x$1 init a
mN (y) = ŷ,mN (x) = x̂

x
ŷ
−→ y

mN (x) = x̂,mN (y) = ŷ

b
ŷ
−→ Cy

y := x when b
mN (b) = b̂,mN (Cy) = ŷ

x
x̂−→ y

mN (x) = x̂,mN (y) = ŷ
y := x default z

z
ẑ∧¬x̂−−−−→ y

mN (z) = ẑ,mN (y) = ŷ

Fig. 3 The SDG example and SDG of DEC

5 Translation validation for synchronous pro-
gram transformations

We adopt the translation validation approach [6,7] to formally

verify that the clock semantic and the dependence between

variables in the program are preserved for every transforma-

tion of the compiler. To do that our verification framework

uses clock models to represent the clock semantic of origi-

nal program and its transformed counterpart. We then intro-

duce a refinement relation which expresses the preservations

of clock semantic, as relation on clock models. LetΦ(P1) and

Φ(P2) be two clock models, we writeΦ(P2) �clk Φ(P1) to de-

noteΦ(P2) is a refinement ofΦ(P1) w.r.t. the clock semantics.

This relation could be interpreted to mean that if a clock trace

is in the set of clock traces of Φ(P2), then it belongs to the set

of clock traces of Φ(P1) as well. For the preservation of de-

pendence, SDG is used to represent the dependence in source

program and its transformed counterpart. A refinement rela-

tion which expresses the preservation of data dependence is

defined as a relation on SDGs. Given SDG(P1) and SDG(P2),

SDG(P2) �dep SDG(P1) means that SDG(P2) is a refinement

of SDG(P1).

5.1 Translation validation for clock transformations

5.1.1 Definition of correct transformation: clock refinement

Let Φ(P1) and Φ(P2) be two clock models, to which we refer

respectively as a source program and its transformed coun-

terpart produced by the compiler. We assume that they have

the same set of input and output variables. We will discuss in

detail in the next section in case the compiler renames some

local variables. We say that P1 and P2 have the same clock se-

mantics if Φ(P1) andΦ(P2) have the same set of clock traces:

∀Tc.(Tc ∈ Γ(Φ(P1))⇔ Tc ∈ Γ(Φ(P2))). (6)

In general, the compilation makes the transformed pro-

gram more concrete. For instance, when the Signal compiler

does the Boolean abstraction which is used to generate the

sequential executable code, the signal with the fastest clock is

always present in the generated code. Additionally, compilers

do transformations, optimizations for removing or eliminat-

ing some redundant behaviors of the source program (e.g.,

eliminating subexpressions, trivial clock relations). There-

fore, Requirement (6) is too strong to be practical. To address

this issue, the relaxed requirement is given by:

∀Tc.(Tc ∈ Γ(Φ(P2))⇒ Tc ∈ Γ(Φ(P1))). (7)

Requirement (7) expresses that if every clock trace of

Φ(P2) is also a clock trace ofΦ(P1), or Γ(Φ(P2)) ⊆ Γ(Φ(P1)).

We say that Φ(P2) is a correct clock transformation of Φ(P1)

or Φ(P2) is a clock refinement of Φ(P1).

Proposition 2 The clock refinement is reflexive and transi-

tive:

• ∀Φ(P),Φ(P) �clk Φ(P).

• If Φ(P1) �clk Φ(P2) and Φ(P2) �clk Φ(P3), then

Φ(P1) �clk Φ(P3).

Proof The reflexivity is obvious based on the clock re-

finement definition. For every clock trace Tc ∈ Γ(Φ(P1)),

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 609

then Tc ∈ Γ(Φ(P2)). Since Φ(P2) �clk Φ(P3), we have

Tc ∈ Γ(Φ(P3)), or Φ(P1) �clk Φ(P3).

5.1.2 Proving clock refinement by SMT solver

We now discuss an approach to check the existence of refine-

ment between two clock models (Requirement (7)) which is

based on the following theorem.

Theorem 1 Given a source program P1 and its transformed

program P2, P2 is a correct clock transformation of P1 if it

satisfies that for every interpretation Î, if Î is a clock configu-

ration of Φ(P2), then it is also a clock configuration ofΦ(P1):

(|= Φ(P2)⇒ Φ(P1))⇒ Φ(P2) �clk Φ(P1). (8)

Proof To prove Theorem 1, we show that if ∀Î.(Î |=
Φ(P2) ⇒ Î |= Φ(P1)) then Γ(Φ(P2)) ⊆ Γ(Φ(P1)). Given Tc ∈
Γ(Φ(P2)), it means that ∀t, Tc(t) ∈ S sat(Φ(P2)). Since ∀Î.(Î |=
Φ(P2) ⇒ Î |= Φ(P1)), thus S sat(Φ(P2)) ⊆ S sat(Φ(P1)), mean-

ing that Tc(t) ∈ S sat(Φ(P1)) for every t. Therefore, we have

Tc ∈ Γ(Φ(P1)). �

To solve the validity of the formula (Φ(P2) ⇒ Φ(P1)) in

(8), a SMT solver is needed since this formula involves non-

Boolean variables and uninterpreted functions. A SMT solver

decides the satisfiability of arbitrary logic formulas of linear

real and integer arithmetic, scalar types, other user-defined

data structures, and uninterpreted functions. If the formula

belongs to the decidable theory, the solver gives two types

of answers: sat when the formula has a model (there exists

an interpretation that satisfies it); or unsat otherwise. In our

case, we will ask the solver to check whether the formula

¬(Φ(P2)⇒ Φ(P1)) is unsatisfiable. Since ¬(Φ(P2)⇒ Φ(P1))

is unsatisfiable iff |= Φ(P2)⇒ Φ(P1)).

In our translation validation, the clock models which are

constructed from Boolean, numerical variables and uninter-

preted functions belong to a part of first-order logic which

have a small model property. The numerical variables are in-

volved only in some implication with uninterpreted functions

such as (x = x′ ∧ y = y′) ⇒ vi
� = v j

�. In addition, the for-

mula is quantifier-free. This means the check of satisfiability

can be established by examining a certain finite cardinality

of models, and it can be solved efficiently and significantly

improves the scalability of the solver.

5.1.3 Illustrate on example

Consider the program DEC and its transformed program

of the clock calculation phase of the Signal compiler,

DEC_BASIC_TRA. For the validation process, the clock se-

mantics of the transformed program is also represented as the

clock model, Φ(DEC_BASIC_TRA) as follows:

(ĈLK⇔ ̂CLK_N ∧ ¬ ̂CLK_FB) ∧ (ĈLK⇒ CLK)

∧ (̂CLK_N ⇔ ̂CLK_N ∨ ̂CLK_FB)

∧ (̂CLK_N ⇒ CLK_N)

∧ ̂CLK_N ⇔ ̂N ⇔ ̂ZN

∧ (̂N ⇔ ̂FB ∧ ̂CLK_FB ∨ ̂v1
− ∧ ĈLK)

∧ (̂v1
− ⇔ ̂ZN)

∧ (̂ZN ⇔ ̂N)

∧ (̂CLK_FB⇔ ̂v1
<= ∧ v1

<=) ∧ (̂v1
<= ⇒ ̂ZN)

∧ ̂CLK_FB⇔ ̂FB

∧ ̂CLK_12⇔ ̂v1
<= ∧ ¬v1

<=

Then to check the transformation from DEC to

DEC_BASIC_TRA is correct w.r.t. the clock seman-

tics, the validator will solve the validity of the formula

Φ(DEC_BASIC_TRA)⇒ Φ(DEC).

5.2 Translation validation for SDGs

5.2.1 Definition of correct transformation: dependence re-

finement

Considering two SDGs SDG(P1) and SDG(P2), to which we

refer respectively as a source program and its transformed

counterpart produced by a compiler. A dependence path from

x to y in SDG(P2) is reinforcement of the dependence path

from x to y in SDG(P1) if at any instant the dependence path

in SDG(P1) is effective implying that the dependence path in

SDG(P2) is effective.

Definition 6 (Reinforcement) Let dp1 = x
ĉ0−→ x1

ĉ1−→

. . .
ĉn−1−−−→ y and dp2 = x

̂c′0−→ x′1
̂c′1−→ . . .

̂c′m−1−−−→ y be two depen-

dence paths in SDG(P1) and SDG(P2), respectively. It is said

that dp2 is a reinforcement of dp1 iff (
∧n−1

i=0 ĉi ⇒
∧m−1

j=0
̂c′j).

We write dp2 �dep dp1 to denote the fact that dp2 is a rein-

forcement of dp1. The condition (
∧n−1

i=0 ĉi ⇒
∧m−1

j=0
̂c′j) is used

to indicate that if the dependence path in SDG(P1) is effec-

tive then the dependence path in SDG(P2) is effective. In the

special case when m = n = 1, x
̂c′0−→ y is a reinforcement of

x
ĉ0−→ y iff (c0 ⇒ c′0).

Definition 7 (Deadlock consistency) A dependence path

dp2 = x
̂c′0−→ x′1

̂c′1−→ . . .
̂c′m−1−−−→ y in SDG(P2) is a deadlock-

consistent for dp1 = x
ĉ0−→ x1

ĉ1−→ . . .
ĉn−1−−−→ y in SDG(P1) iff

610 Front. Comput. Sci., 2013, 7(5): 598–616

for every dependence path y
̂l0−→ z1

̂l1−→ . . .
̂lp−1
−−→ x in SDG(P1)

such that (
∧n−1

i=0 ĉi ∧
∧p−1

j=0
̂l j) ⇔ false, then for every depen-

dence path y
̂l′0−→ z′1

̂l′1−→ . . .
̂l′q−1
−−→ x in SDG(P2), it satisfies

(
∧m−1

u=0
̂c′u ∧
∧q−1

v=0
̂l′u)⇔ false, denoted by dp2 �dep dp1.

When m = n = p = q = 1, x
̂c′0−→ y is deadlock-consistent for

x
ĉ0−→ y iff ((c0 ∧ l0)⇔ false)⇒ ((c′0 ∧ l′0)⇔ false). Deadlock

consistency expresses the fact that if there are dependence

paths from a signal x to a signal y and vise-versa such that

there is no cyclic dependence between x and y in the source

program, then the transformed program cannot introduce any

cyclic dependence between x and y.

Recall that SDG(P1) and SDG(P2) are two SDGs, we as-

sume that they have the same set of nodes. We say that the

transformed counterpart P2 of the source program P1 pre-

serves the dependences between signals if the following con-

ditions are satisfied:

1. For any dependence path between signals from signal

x to signal y in SDG(P1) at a clock constraint ĉ1, then

there exists a dependence path from x to y at a clock

constraint ĉ2 in SDG(P2) such that whenever the de-

pendence in SDG(P1) is effective, then the dependence

in SDG(P2) is also effective.

2. If there is no deadlocks in SDG(P1), then SDG(P2) in-

troduces no deadlocks

We say that SDG(P2) is a correct transformation of

SDG(P1) or SDG(P2) is a dependence refinement of

SDG(P1). We write SDG(P2) �dep SDG(P1) to denote the

fact that there exists a dependence refinement relation be-

tween SDG(P2) and SDG(P1). The formal definition of de-

pendence refinement is:

Definition 8 (Dependence refinement) Let SDG(P1) and

SDG(P2) be two synchronous dependence graphs, SDG(P2)

is a dependence refinement of SDG(P1) if:

- ∀dp1 = x
ĉ0−→ x1

ĉ1−→ . . .
ĉn−1−−−→ y in SDG(P1),

∃dp2 = x
̂c′0−→ x′1

̂c′1−→ . . .
̂c′m−1−−−→ y in SDG(P2)

s.t dp2 �dep dp1

- ∀dp1 = x
ĉ0−→ x1

ĉ1−→ . . .
ĉn−1−−−→ y in SDG(P1) and

∀dp2 = x
̂c′0−→ x′1

̂c′1−→ . . .
̂c′m−1−−−→ y in SDG(P2),

dp2 �dep dp1

Proposition 3 The reinforcement, deadlock consistency,

and dependence refinement are reflexive and transitive.

Proof
• Reinforcement

• Reflexivity: For any dependence path dp, based on the

definition, we always have dp �dep dp.

• Transitivity: Assume that dp1 �dep dp2 and dp2 �dep

dp3, we have (
∧n−1

i=0 ĉi ⇒
∧m−1

j=0
̂c′j) ∧ (

∧m−1
j=0
̂c′j ⇒

∧p−1
k=0
̂c”k), thus (

∧n−1
i=0 ĉi ⇒

∧p−1
k=0
̂c”k), or dp1 �dep dp3.

• Deadlock consistency

• Reflexivity: Based on the definition, we always have

dp �dep dp.

• Transitivity: Assume that dp1 �dep dp2 and dp2 �dep

dp3, we have (((
∧n−1

i=0 ĉi ∧
∧p−1

j=0
̂l j) ⇔ false) ⇒

((
∧m−1

u=0
̂c′u ∧
∧q−1

v=0
̂l′u)⇔ false)∧ ((

∧m−1
u=0
̂c′u ∧
∧q−1

v=0
̂l′u)⇔

false) ⇒ ((
∧r−1

t=0
̂c”t ∧

∧s−1
z=0
̂l”z) ⇔ false)), thus

((
∧n−1

i=0 ĉi ∧
∧p−1

j=0
̂l j) ⇔ false) ⇒ ((

∧r−1
t=0
̂c”t ∧

∧s−1
z=0
̂l”z)⇔ false)), or dp1 �dep dp3.

• Dependence refinement

• Reflexivity: For every dependence path dp in SDG(P),

we have dp �dep dp and dp �dep dp, thus SDG(P) �dep

SDG(P).

• Transitivity: Assume that SDG(P1) �dep SDG(P2) and

SDG(P2) �dep SDG(P3), we will show that SDG(P1)

�dep SDG(P3).

1) For every dependence path dp3 in SDG(P3), there

exists a dependence path dp2 in SDG(P2) such that

dp2 �dep dp3. Since SDG(P1) �dep SDG(P2), there

exists a dependence path dp1 in SDG(P1) such that

dp1 �dep dp2. Following the transitivity of the rein-

forcement, we have dp1 �dep dp3.

2) For every dependence path dp1 and dp2 from node x

to node y in SDG(P1) and SDG(P2), respectively, it sat-

isfies dp1 �dep dp2 since SDG(P1) �dep SDG(P2). Be-

cause SDG(P2) �dep SDG(P3), for every dependence

path dp3 from x to y in SDG(P3), we have dp2 �dep

dp3. Apply the transitivity property of the deadlock

consistency, we have dp1 �dep dp3.

5.2.2 Proving dependence refinement by SMT solver

Given two SDGs, we introduce an approach to check the ex-

istence of dependence refinement between them that is imple-

mented with a SMT-solver. A SMT-solver decides the satisfi-

ability of arbitrary logic formulas of linear real and integer

arithmetic, scalar types, other user-defined data structures,

and uninterpreted functions. If the formula belongs to the de-

cidable theory, the solver gives two types of answers: sat

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 611

when the formula has a model (there exists an interpretation

that satisfies it); or unsat otherwise. In our case, the for-

mulas which label the edges of the graphs are over Boolean

variables, thus the solving is decidable and very efficient [22].

Following Definition 8, we will traverse the entire graphs

SDG(P1) and SDG(P2) to verify that:

• for every path in SDG(P1), there exists a reinforcement

path in SDG(P2),

• and for any path from x to y in SDG(P1) and SDG(P2),

they are deadlock-consistent.

It means that the basic element which is verified is that

given two dependence paths, how we check the reinforce-

ment and deadlock-consistent properties. Consider two de-

pendence paths dp1 = x
ĉ0−→ x1

ĉ1−→ · · ·
ĉn−1−−−→ y and

dp2 = x
̂c′0−→ x′1

̂c′1−→ · · ·
̂c′m−1−−−→ y, dp2 is a reinforcement of

dp1 iff (
∧n−1

i=0 ĉi ⇒
∧m−1

j=0
̂c′j). The checking of this condi-

tion can be implemented by asking a SMT-solver to check

|= (
∧n−1

i=0 ĉi ⇒
∧m−1

j=0
̂c′j). In the same way, a SMT-solver can

be used to check the deadlock consistency between two de-

pendence paths, that means we will ask the SMT-solver to

check the validity of the formula ((
∧n−1

i=0 ĉi∧
∧p−1

j=0
̂l j)⇔ false)

⇒ ((
∧m−1

u=0
̂c′u ∧
∧p−1

v=0
̂l′u)⇔ false).

We present here the concept of abstraction over SDGs

which enable the checking process more efficient. According

to the nature of SDGs, the abstraction is computed through

the following rules of parallel and series [23] upon the input

and output nodes:

x
ĉ0−→ y

ĉ1−→ z ⇒ x
ĉ0∧ĉ1−−−−→ z;

x
ĉ0−→ y and x

ĉ1−→ y⇒ x
ĉ0∨ĉ1−−−−→ y;

Let SDG(P1) and SDG(P2) be graphs which are applied the

rules of parallel and series, then SDG(P2) is a dependence re-

finement of SDG(P1) if the following conditions are satisfied:

- ∀e1 = (x, y) in SDG(P1),∃e2 = (x, y) in SDG(P2)

s.t e2 �dep e1

- ∀e1 = (x, y) in SDG(P1), e2 = (x, y) in SDG(P2)

e2 �dep e1

6 Implementation

In this section, we describe the implementation of our val-

idator and some adaptation when the translation validation is

applied to the real Signal compiler. And we also show the

previously unknown bugs have been detected so far by the

validator.

6.1 Toward certified compiler

Given a program P, with an unverified compiler, we consider

the following process:

1. The compiler takes program P and transforms it.

2. If there is any error (i.e., syntax errors), it outputs an

Error.

3. Otherwise, it outputs the intermediate representation

IR(P) (i.e., the intermediate representation is written

in the same language syntaxes as the source program

P).

These steps can be represented in the following pseudo-

code, where Cp(P) is the compilation step from the source

program P to either compiled code IR(P) or compilation er-

rors.

1. if (Cp(P) is Error)

2. then output Error;

3. else output IR(P).

Now, it is followed by our refinement verification which

checks that the transformed program IR(P) refines P w.r.t. the

clock semantic and the dependence. This will provide formal

guarantee as strong as that provided by a formally certified

compiler. Indeed, consider the following process:

1. if (Cp(P) is Error)

2. then output Error;

3. else

4. if ((Φ(IR(P)) �clk Φ(P)) &&

(SDG(IR(P)) �dep SDG(P)))

5. then output IR(P);

6. else output Error.

We describe the main components of the implementation

which is integrated in the existing Polychrony toolset [12] to

prove the preservation of clock semantics and dependence of

the Signal compiler. We are interested in the two first stages:

clock calculation, boolean abstraction and static scheduling.

The intermediate forms in the transformations of the compiler

may be expressed in the Signal language itself.

At a high level, our tool which is depicted in Fig. 4

works as follows. First, it takes the input program P.SIG

and its transformed program P_TRA.SIG, computes the

corresponding clock models. The clock models of input

and transformed programs are combined as the formula

(Φ(P_TRA.SIG) ⇒ Φ(P.SIG)). It uses a solver to check

|= (Φ(P_TRA.SIG) ⇒ Φ(P.SIG)) (or equivalently M �|=

612 Front. Comput. Sci., 2013, 7(5): 598–616

Fig. 4 An overview of our integration within Polychrony toolset

¬(Φ(P_TRA.SIG) ⇒ Φ(P.SIG))). The result of this check-

ing can be exploited for the preservation of clock semantic

of the transformations. If the result says that the checked for-

mula is not valid (or the negation formula is satisfiable) then

it emits compilation error. Otherwise, the compiler continues

its work. The same procedure is applied for the other steps

of the compiler. Finally, our verification process asserts that

Φ(P_BOOL_TRA.SIG) �clk Φ(P_TRA.SIG) �clk Φ(P.SIG)

along the transformations of the compiler.

In the similar way, for the scheduling stage of the compila-

tion, our tool takes the program P_BOOL_TRA.SIG and its

transformed program P_SEQ_TRA.SIG, constructs the corre-

sponding SDGs. Then it checks that SDG(P_SEQ_TRA.SIG)

is a dependence refinement of SDG(P_BOOL_TRA.SIG). If

the answer is “No”, then it emits compilation error. Other-

wise, the compiler continues its work.

Here, we delegate the checking of the refinements to a

SMT solver. Our implementation uses the SMT-LIB common

format [24] to encode the clock models as input of the SMT-

solver. For our implementation, we consider the Yices [11]

solver, which is one of the best solvers at the SMT-COMP

competition [25].

6.2 Constant clock and renaming

In Signal, the occurrence of constants is allowed to desig-

nate a constant signal (e.g., a signal with a constant value).

However, each occurrence of a constant has a particular clock

since the corresponding signal is hidden, this clock is de-

termined by the context where the constant is used, called

context clocks. This makes our abstraction for Signal opera-

tor above invalid in case a constant signal is used. In conse-

quence of that, we provide the abstraction for each Signal op-

erator when this operator uses a constant signal, where cst

denotes a constant.

6.2.1 Stepwise extensions

• φ(y := cst) = ŷ⇒ (ȳ⇔ cst) if y is Boolean.

• φ(y := cst) = ∅ if y is non-Boolean.

• φ(y := x and cst) = (ŷ⇔ x̂) ∧ (ŷ⇒ (ȳ⇔ x ∧ cst)).

• φ(y := x or cst) = (ŷ⇔ x̂) ∧ (ŷ⇒ (ȳ⇔ x ∨ cst)).

• φ(y := x � cst) = (ŷ⇔ ̂vi
� ⇔ x̂) ∧ (ŷ⇒ (ȳ = vi

�)).

6.2.2 Deterministic merge

• x and y are Boolean.

φ(y := x default cst) = (ŷ ⇔ (x̂ ∨ ŷ)) ∧ ŷ ⇒ ((x̂ ∧ (ȳ ⇔
x̄)) ∨ (¬x̂ ∧ (ȳ⇔ cst)))).

φ(y := cst default x) = (ŷ ⇔ (x̂ ∨ ŷ)) ∧ ŷ ⇒ ((ŷ ∧ (ȳ ⇔
cst)) ∨ (¬ŷ ∧ (ȳ⇔ x̄)))).

• x, y and z are non-Boolean.

φ(y := x default cst) = ŷ⇔ (x̂ ∨ ŷ).

φ(y := cst default x) = ŷ⇔ (x̂ ∨ ŷ).

6.2.3 Boolean sampling

• x and y are Boolean.

φ(y := x when true) = (ŷ⇔ (x̂ ∧ ŷ)) ∧ (ŷ⇒ (ȳ⇔ x̄)).

φ(y := x when false) = ŷ⇔ false .

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 613

φ(y := cst when b) = (ŷ⇔ (b̂ ∧ b̄)) ∧ (ŷ⇒ (ȳ⇔ cst)).

• x and y are non-Boolean.

φ(y := x when true) = ŷ⇔ (x̂ ∧ ŷ).

φ(y := x when false) = ŷ⇔ false .

φ(y := cst when b) = ŷ⇔ (b̂ ∧ b̄).

Consider a process P and its sub-process P1 such that a sig-

nal named x is local variable of both P and P1. When compil-

ing this program, the compiler rename variable x in the sub-

process P1. Our validator requires that the mapping of the

original name and the new name for every variable such as x.

Based on this mapping, for every variable x and its new name

x_i, the following conjunct is added to the clock model:

• (x̂⇔ ̂x_i) ∧ (x̄⇔ x_i) if x is Boolean.

• (x̂⇔ ̂x_i) ∧ (x̄ = x_i) if x is non-Boolean.

6.3 Detected bugs

So far out validator has revealed two previously-unknown

bugs in the compilation of the Signal compiler, one of them

is related to the multiple constraints of clock. Another is a

syntax error of generated C code from a Signal program in

which a constant signal is presented.

The first problem was introduced when multiple con-

straints condition a clock such as the following segment of

Signal program and its clock calculation parts in transformed

programs.

// P.SIG

| xˆ= when (y � 9)

| xˆ= when (y � 1)

// P_BASIC_TRA.SIG

. . .

| CLK_x:= when (y � 9)

| CLK:= when (y � 1)

| CLK_xˆ= CLK

| CLKˆ= XZX_24

. . .

// P_BOOL_TRA.SIG

. . .

| when Tickˆ= C_zˆ= C_CLK

| when C_zˆ= xˆ= z

| C_z := y <= 9

| C_CLK := y �1

. . .

In the transformed counterpart P_BASIC_TRA, the in-

troduction of signal XZX_24 and the synchronization be-

tween CLK and XZX_24 cause the incorrect specification of

clocks (e.g., in the source program P and P_BOOL_TRA, sig-

nal x is present, but in program P_BASIC_TRA, it might

be absent when XZX_24 is absent). This bug be caught

by our validator when it found that Φ(P_BOOL_TRA) �clk

Φ(P_BASIC_TRA). In addition, signal XZX_24 is intro-

duced without declaration that makes a syntax error in

P_BASIC_TRA.

The second problem was present in the Signal program in

which a merge operator with a constant signal is used such

as y := 1 default x. The clock calculation is correct based

on the validator result when it check the clock refinements

between the input and transformed counterparts. However, it

seems that the code generation phase of the compiler deals

wrongly with the clock context of a constant signal by intro-

ducing a syntax error in the generated C code. The bug and

its fix are given by:

// Version with bug

if (C_y)

{

y = 1; else y = x;

w_ClockError_y(y);

}

// Version without bug

if (C_y)

{

if (C_y) y = 1; else y = x;

w_ClockError_y(y);

}

7 Related work and conclusion

The notion of translation validation was invented in [6,7] by

Pnueli et al. to verify the code generator of Signal. In that

work, the authors define a language of symbolic models to

represent both the source and target programs, called syn-

chronous transition systems (STS). A STS is a set of logic

formulas which describes the functional and temporal con-

straints of the whole program and its generated C code. Then

they use BDD [26] representations to implement the sym-

bolic STS models, and their proof method uses a solver to

reason on the constraints. The drawback of this approach is

that it does not capture explicitly the clock semantic and data

dependences. And in some cases, the compiler eliminates the

use of a local register variable in the generated code and then,

the mapping cannot be established. Additionally, for a large

program, the formula is very large, including numerical ex-

pressions that cause some inefficiency. Moreover, the whole

calculation of a synchronous program or the generated code

614 Front. Comput. Sci., 2013, 7(5): 598–616

is considered as one atomic transition in STS, thus it does not

capture the data dependencies of the programs and does not

explicitly prove the preservation of abstract clocks and data

dependences.

Another related work is the static analysis of Signal pro-

grams for efficient code generation [20]. In a similar way as

we do, the authors formalize the abstract clocks and clock

relations as first-order logic formulas with the help of inter-

val abstraction technique. The objective is to make the gener-

ated code more efficient by detecting and removing the dead-

code segments (e.g., segment of code to compute a data-flow

which is always absent). They determine the existence of

empty clocks, mutual exclusion of two or more clocks, or

clock inclusions, by reasoning on the formal model using a

SMT solver.

Some other works have adopted the translation validation

approach in verification of transformations, and optimiza-

tions. In [9], the translation validation is used to verify sev-

eral common optimizations such as common subexpression

elimination, register allocation, and loop inversion. The val-

idator is simulation-based, that means it checks the existence

of a simulation relation between two programs. Leroy [27]

used this technique to develop the CompCert high-assurance

C compiler. The programs before and after the transforma-

tions and optimizations of the compiler are represented in a

common intermediate form, then the preservation of seman-

tics is checked by using symbolic execution and the proof

assistant Coq. It also has shown that translation validation

can be used to validate advanced loop optimizations such as

software pipelining as in [28]. Tristan et al. [10] recently pro-

posed a framework for translation validation of LLVM opti-

mizer. For a function and its optimized counterpart, they com-

pute a shared value-graph. The graph is normalized (roundly

speaking, the graph is reduced). After the normalizing, if the

outputs of two functions are represented by the same sub-

graph, they can safely conclude that two functions are equiv-

alent.

On the other hand, Biernacki et al. [29] introduce a generic

machine-based intermediate presentation to describe the tran-

sition functions in the modular compilation of Scade/Lustre.

The formalization of the intermediate presentation appears as

a fundamental need in order to develop a certified compiler

in a proof assistant. However, as we mentioned above, this

approach yields a situation where any change of the compiler

requires redoing the proof. Moreover, the compiler in general

is much bigger and more difficult to verify than a validator

such as ours. With the same purpose, in the work of [30],

we encode the source Signal programs and their transforma-

tions with polynomial dynamical systems, and we prove that

the transformations preserve the abstract clocks and clock

relations of the source programs. This approach uses simu-

lation relation in model checking techniques, and it suffers

from the increasing of the state-space when it deals with

large programs. On the contrary, in our present work, the

abstract clocks and clock relations are described as a logic

formula over Boolean variables. Thanks to the efficiency of

SMT solvers in processing formulas over Boolean variables,

our approach can deal with large programs whose number of

variables is very big. This situation generally makes the state-

space explosion problem in model checking techniques.

The present paper provides a proof of preservations of

clock semantic and the data dependence during the transfor-

mations of the Signal compiler. We have presented a tech-

nique based on SMT solving to prove these preservations

of clock semantic and the data dependence. The desired be-

havior of a given source program and its transformed coun-

terpart are represented as clock models and SDGs. Refine-

ment relations between clock models and synchronous data-

flow graphs are used to express the preservations, which are

checked by using a SMT solver.

We have implemented and integrated our validator within

the Polychrony toolset by using the Yices solver. As future

work, we would like to extend our work to the final phase of

the Signal compiler, the code generation. Meaning that we

will adapt our translation validation to work with the code

generation phase. We will use the proof of abstract clock

semantics preservation to verify the equivalence between

data-flows and the corresponding variables from the program

and its generated code. The verification of equivalence will

be done by using a value-graph which contains only the com-

putations of data-flows and where there is no timing infor-

mation. We will therefore evaluate this graph more efficiently.

Acknowledgements This work was supported by Agence Nationale de
la Recherche, project VERISYNC. We thank Sandeep Shukla for his early
interest and enthusiasm, and Abdoulaye Gamatié, Laure Gonnord for dis-
cussing some parts of this work and exchanging ideas.

References
1. Berry G. The foundations of Esterel. In: Proof, Language, and Inter-

action. 2000, 425–454
2. Halbwachs N. A synchronous language at work: the story of lustre.

In: Proceedings of the 3rd ACM and IEEE International Conference

on Formal Methods and Models for Co-Design. 2005, 3–11
3. Gamati A. Designing embedded systems with the Signal program-

ming language: synchronous, reactive specification. Springer Pub-

lishing Company, Incorporated, 2009

Van Chan NGO et al. Formal verification of synchronous data-flow program transformations toward certified compilers 615

4. Inria. The coq proof assitant. http://coq.inria.fr

5. Do-178c. http://rtca.org

6. Pnueli A, Siegel M, Singerman E. Translation validation. Tools and

Algorithms for the Construction and Analysis of Systems, Springer,

1998�151–166

7. Pnueli A, Shtrichman O, Siegel M. Translation validation: from Sig-

nal to C. Lecture Notes in Computer Science, 1999,1710: 231–255

8. Inria. The compcert project. http://compcert.inria.fr

9. Necula G C. Translation validation for an optimizing compiler. ACM

SIGPLAN Notices, 2000, 35(5): 83–94

10. Tristan J B, Govereau P, Morrisett G. Evaluating value-graph transla-

tion validation for LLVM. ACM Sigplan Notices, 2011, 295–305

11. Dutertre B, Moura de L. Yices Sat-solver. http://yices.csl.ri.com

12. Espresso, Polychrony toolset. http://www.irisa.fr/espresso/Polychrony

13. Benveniste A, Le Guernic P. Hybrid dynamical systems theory and

the signal language. IEEE Transactions on Automatic Control, 1990,

35(5): 535–546

14. Gautier T, Le Guernic P, Besnard L. Signal: a declarative language

for synchronous programming of real-time systems. Lecture Notes in

Computer Science, 1987, 274: 257–277

15. Abramsky S, Jung A. Domain theory. Abramsky S, Gabbay D M,

Maibaum T S E, ed(s). Handbook of Logic in Computer Science: Vol-

ume 3: Semantic Structures. Oxford:Clarendon Press,1994, 1–168

16. Kahn G. The semantics of a simple language for parallel program-

ming. IFIP Congress, 1974, 471–475

17. Besnard L, Gautier T, Le Guernic P, Talpin J P. Compilation of

polychromous data flow equations. Synthesis of Embedded Software,

Springer, 2010, 1–40

18. Ackermann W. Solvable Cases of the Decision Problem. Vol. 12.

North-Holland Pub. Co., 1954

19. Le Guernic P, Gautier T. Data-flow to von neumann: the signal ap-

proach. Rapports de recherche- INRIA

20. Gamatié A, Gonnord L. Static analysis of synchronous programs in

signal for effcient design of multi-clocked embedded systems. ACM

Sigplan Notices, 2011, 46(5): 71–80

21. Allen F E. Control flow analysis. ACM SIGPLAN Notices, 1970, 1–

19

22. Biere A, Heule M, Maaren v H, Walsh T. Handbook of Satisfiability.

Frontiers in Artificial Intelligence and Applications, vol. 185, 2009

23. Ma_eïs O, Le Guernic P. Combining dependability with architectural

adaptability by means of the signal language. Lecture Notes in Com-

puter Science, 1993(724): 99–110

24. Barrett C, Ranise S, Stump A, Tinelli C. The satisfiability modulo

theories library (SMT-LIB). http://www.SMT-LIB.org, 2008

25. http://www.smtcomp.org/2009

26. Bryant R E. Graph-based algorithms for boolean function manipula-

tion. IEEE Transactions on Computers, 1986, 100(8): 677–691

27. Leroy X. Formal certification of a compiler back-end or: program-

ming a compiler with a proof assistant. ACM SIGPLAN Notices,

2006, 41(1): 42–54

28. Tristan J B, Leroy X. A simple, verified validator for software pipelin-

ing. ACM SIGPLAN Notices, 2010, 45(1):83–92

29. Biernacki D, Colaço J L, Hamon G, Pouzet M. Clock-directed modu-

lar code generation for synchronous data-flow languages. ACM SIG-

PLAN Notices, 2008, 43(7): 121–130

30. Ngo V C, Talpin J P, Gautier T, Le Guernic P, Besnard L. Formal

verification of compiler transformations on polychronous equations.

Lecture Notes in Computer Science, 2012, 7321:113–127

Van Chan Ngo is a PhD student at IN-

RIA. His main research interests are

design, development, and formal verifi-

cation of embedded real-time systems,

and compiler theory. He finished the

engineer degree with excellent ranking

in Computer Engineering at the Tal-

ent Training Center, Hanoi University

of Technology in 2005, and the gradu-

ate degree in Applied Mathematics and Computer Science within

the French government scholarship program at Verimag Laboratory,

Université de Grenoble 1, Grenoble, France in 2008.

Jean-Pierre Talpin is a senior researcher

with INRIA and leads the project team

who develops the open-source Poly-

chrony environment. He received his

PhD from Université Paris VI Pierre

et Marie Curie in 1993. He then was

a research associate with the European

Computer-Industry Research Centre in

Munich before to join INRIA in 1995.

Jean-Pierre edited two books with Elsevier and Springer, guest-

edited more than ten special issues of ACM and IEEE scientific

journals, and authored more than 20 journal articles and book chap-

ters and 60 conference papers. He received the 2004 ACM Award

for the most influential POPL paper, for his 2nd conference paper

with Mads Tofte, and the 2012 LICS Test of Time Award, for his 1st

conference paper with Pierre Jouvelot.

Thierry Gautier is a researcher with IN-

RIA. He received the graduate degree

from the Institut National des Sciences

Appliquées, Rennes, France, in 1980,

and the PhD degree in computer sci-

ence from University of Rennes 1 in

1984. He is one of the designers of

the Signal language, the polychronous

model of computation and the Poly-

chrony toolset. His main research interests lie in the safe design of

complex embedded systems, including formal modeling, formal val-

idation, and transformations of models to target architectures.

616 Front. Comput. Sci., 2013, 7(5): 598–616

Paul Le Guernic graduated from Insti-

tut National des Sciences Appliquées

de Rennes in 1974. He performed his

Thèse de troisième cycle in Computer

Science in 1976. From 1978 to 1984 he

had a research position at INRIA. He is

Directeur de Recherche in this institute

since 1985. He has been head of the

“Programming Environment for Real-

time Applications” group, which has defined and developed the Sig-

nal language. His main current interests include the development of

theories, tools, and methods, for the design of real-time embedded

heterogeneous systems. He is one the architects of the Polychrony

toool set.

Loïc Besnard is currently a senior engi-

neer at CNRS, France. He received his

PhD degree in computer science from

University of Rennes, France (1992).

His research interests include the soft-

ware reliability for the design of em-

bedded systems: modeling, temporal

analysis, formal verification, simula-

tion, and synthesis of embedded sys-

tems. He is involved in the development of the Polychony toolset

based on the synchronous language Signal.

