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Abstract

Static techniques for deriving upper bounds on the resource consumption of programs
have been extensively studied. However, there are applications that require more fine-grained
information such as the difference between upper and lower bounds or the guaranty that
the resource usage of a program does not differ for certain inputs. This article presents two
novel substructural type systems for deriving lower bounds and for proving that a program
has constant resource consumption for a class of inputs. The type systems are based on the
potential method of amortized analysis to achieve compositionality, precision, and automatic
inference using off-the-shelf linear optimization. While classic amortized analysis treats
potential as an affine resource, the novel type systems treat potential as a relevant and linear
resource, respectively. The soundness of the type systems with respect to an operational cost
semantics is verified using the proof assistant Agda. The novel constant-resource and lower
bound analyses are applied to quantify and prevent security vulnerabilities that leak secret
information through resource consumption, such as side channels. First, implementations
of the lower bound and constant-resource type systems in Resource Aware ML are used
to automatically verify constant-time implementations of list comparison, encryption and
decryption routines, database queries, and other resource-sensitive functionality. Second,
the type systems are used to implement a method for automatically turning programs into
constant-resource programs using LP solving. The method is static, does not require tracking
resources at runtime, and works on most programs for which Resource Aware ML can derive
an upper bound. Third, a resource-aware noninterference property is introduced. It relaxes
the constant-resource requirement on programs, and requires only that resource usage does
not leak information about secret inputs. This property is statically verified by combining the
linear type system for constant resource consumption with an information flow type system.

1 Introduction

Automatic static analysis of the resource consumption of programs is an active area of research.
Motivated by applications in embedded and real-time systems [W+08], finding performance
bugs [ODL15], and providing feedback to developers [GMC09], static resource analysis tech-
niques have focused on derivation of worst-case bounds [SZV14, CHK+15, BEF+14, ALM12,
AM13, DLR12, AFR15, AAG+09]. One successful technique for automatically finding resource
bounds at compile time is automatic amortized resource analysis (AARA). The idea of AARA is
to combine the potential method of amortized analysis with existing programming languages
techniques to achieve automation. For example, AARA has been integrated into type systems to
automatically derive linear [HJ03] and polynomial [HH10, HAH12, HS14] bounds for strict and
higher-order [JHLH10, Ano15] functional programs.
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The main advantages of AARA are compositionality, efficiency, and precision. It has been
shown that the technique can automatically derive bounds for complex real-world programs
such as parts of the CompCert C Compiler [Ano15] and the cBench benchmark suite [CHS15].
Precision and efficiency stems from the selection of algebraic structures such as multivariate re-
source polynomials [HAH12] that can represent a wide range of bounds, as well as the reduction
of bound inference to efficient LP solving. AARA is naturally compositional since the potential
methods integrates reasoning about size changes and resource consumption. However, existing
AARA techniques are limited to worst-case bounds.

Novel resource type systems The starting point of this paper is the technical insight that
the potential method of amortized analysis can also be used to derive lower bounds, as well as
to prove that a program has constant resource consumption for a fixed input size. In classic
AARA the potential is used as an affine resource: it must be available to cover cost but excess
potential is simply discarded. We show that if potential is treated as a linear resource, then
corresponding type derivations prove that programs have constant resource consumption,
i.e., resource consumption is independent of the execution path. Intuitively, this amounts to
requiring that all potential must be used to cover the cost and that excess potential is not wasted.
Furthermore, we show that if potential is treated as a relevant resource, then we derive lower
bounds on the resource usage. Following a similar intuition, this requires that all potential is
used, but the available potential does not need to be sufficient to cover the remaining cost.

The two novel type systems that we present enjoy the same advantages as classic AARA for
upper bounds. They are naturally compositional, often derive precise results, and allow for fully-
automated type inference based on LP solving. Moreover, as in classic AARA, they are parametric
in the resource of interest and incorporate user-specified resource metrics that assign a constant
cost to each basic operation. The type systems discussed in this paper apply to a simple first-
order functional language, and use the linear potential annotations from the original work of
Hofmann and Jost [HJ03]. This is sufficient to discuss the main technical points although it
limits the systems to linear bounds. However, our implementation builds on Resource Aware ML
(RAML) [Ano15], and supports polynomial bounds, user-defined data types, and higher-order
functions. We formalized the soundness proof of these type systems, as well as that of classic
linear AARA, in the proof assistant Agda. Soundness is proved with respect to an operational
cost semantics, and like the type systems themselves, is parametric in the resource of interest.

Side channel mitigation In the second half of the paper, we apply our lower-bound and
constant-resource type systems to the problem of preventing and quantifying side channel
vulnerabilities. Side channel attacks extract sensitive information about a program’s state
through its use of resources such as time, network, and memory. Several notable instances of this
type of attack have demonstrated leakage of cryptographic keys [Koc96, BB03, CHVV03, AP13,
GBK11] and private user data [HPN11, AKM+15, FS00, BB07, ZJRR14] through such channels.

Whereas traditional notions of information flow can be described in terms of standard pro-
gram semantics, a similar treatment of side channels requires incorporating the corresponding
resource into the semantics and applying quantitative reasoning. This difficulty has led previous
work in the area to treat resource use indirectly, by reasoning about the flow of secret information
into branching control flow [ABB+16, RQaPA16, BBC+14, MPSW06] or introducing obfuscation
components that mask secret-dependent differences in resource use [AZM10, KD09]. These
approaches can limit program expressiveness or lead to unnecessary performance penalties.

In contrast, our approach performs quantitative analysis of resource use directly through
the constant-resource type system. We consider an adversary that is able to observe the final
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resource consumption of a program as specified by a cost semantics, and derive a proof that the
attacker’s observations will not change as the program’s inputs do. Although this observation
model does not cover all known side-channel attacks, it applies to a large class of attackers
that are not able to make intermediate observations of the program’s behavior, such as those
that reside over a network. Additionally, we show how one can use derived upper and lower
bounds to quantify leakage through resource use, by reasoning about the number of distinct
observations an attacker can make.

In general, requiring that a program only ever consumes a constant amount of resources
is too restrictive. In most settings, it is sufficient to make sure that the resource usage of a
program does not depend on selected parts of the input. To account for this, we present a new
information flow type system that incorporates our constant-resource type system to reason
about an adversary who can observe and manipulate inputs marked public, but can only make
observations on secret inputs through the program’s resource behavior and public outputs.
Intuitively, the guarantee enforced by this type system, resource-aware noninterference, requires
that the parts of the program affected by secret inputs can only make constant use of resources.

The main technical contribution in this part is the soundness proof of this type system
with respect to the cost semantics. The main conceptional contribution is that the type system
allows to freely switch between local and global reasoning. One extreme would be to ignore the
information flow of the secret values and prove that the whole program has constant resource
consumption. The other extreme would be to ensure that every conditional that branches on
a secret value (a critical conditional) uses a constant amount of resources. However, there are
constant time programs in which individual conditional are not constant time (see Section 4). As
a result, we allow different levels of global and local reasoning and in the type system to ensure
that every critical conditional occurs in a constant-resource block.

Finally, we show that our type inference algorithm for the constant-resource type system
can be used to automatically turn programs into constant-resource programs. To this end, we
introduce a consume expression that performs resource padding (e.g., sleep for time). The
amount of resource padding that is needed is automatically determined by the LP solver and is
parametric in the size of the program variables. This technique is more efficient then existing
techniques [citations] since it does not change the worst-case resource behavior of the program.
Of course, it would be possible to do such a resource padding to the worst-case behavior
dynamically at the end of the run of the program. The advantage of our method is that we do not
have to keep track of the actual resource usage at runtime and that we automatically derive a
proof (a type derivation) that the modified program has constant resource use without reasoning
on a meta level. We implemented this technique in RAML.

Contributions We make the following contributions:

• Two novel AARA type systems that derive lower bounds and prove constant resource use,
and an implementation of these systems that extends RAML. We evaluate the implemen-
tation on several examples, including encryption routines and data processing programs
that were previously studied in the context of timing leaks in differentially-private sys-
tems [HPN11].

• A mechanization of the soundness proofs the two new type systems and classic AARA for
upper bounds in Agda. To the best our knowledge, this is also the first formalization of the
soundness of linear AARA for worst-case bounds.

• An information-flow type system that incorporates our constant-time system to prevent
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leakage of selected secrets through resource side channels, and an LP-based method that
transforms programs into constant-resource versions.

2 Language-level constant-resource programs

In this section we introduce a language, an operational cost semantics, and the notion of
constant-resource functions.

2.1 The language

Syntax To discuss the main ideas of our work, it is sufficient to study a purely functional first-
order and monomorphic typed functional language with Booleans, integers, pairs, and list data
types, pattern matching and recursive functions as given in Fig. 1. The base types of the language
are given as follows.

zero-order types: T ::= unit | bool | int | L(T ) | T ∗T
first-order types: G ::= T → T

In this grammar we use abstract binding trees [Har12] and in examples we use equivalent

e ::= () | true | false | n | x ::= () | true | false | n | x
| op¦(x1, x2) | x1 ¦ x2

| app( f , x) | f (x)
| let(x,e1, x.e2) | let x = e1 in e2

| if(x,et ,e f ) | if x then et else e f

| pair(x1, x2) | (x1, x2)
| match(x, (x1, x2).e) | match x with (x1, x2) → e
| nil | []
| cons(x1, x2) | x1 :: x2

| match(x,e1, (x1, x2).e2) | match x with | [] → e1 | x1 :: x2 → e2

| share(x, (x1, x2).e) | share (x1, x2) = x in e

¦ ∈ {+,−,∗, div , mod ,=,<>,>,<,<=,>=, and , or }

Figure 1: Syntax of the language

expressions in OCaml syntax. The expressions are in let normal form, meaning that they are
formed from variables whenever it is possible. It makes the typing rules and semantics simpler
without loosing expressivity. The syntactic form share has to be use to introduce multiple
occurrences of a variable in an expression.

A value is a boolean constant, an integer value n, the empty list nil , a list of values [v1, ..., vn],
or a pair of values (v1, v2). A type context Γ : VID → T is a partial mapping from variable
identifiers to data types T . A signature Σ : FID →G is a partial mapping from function identifiers
to first-order types G . The typing rules that define a type judgement Σ;Γ` e : T are standard.

A program is a tuple containing a signature Σ and a finite set of tuples (eg , xg )g∈dom(Σ) where
eg is an expression defining the function’s body and xg is the argument. For any eg , it holds that
Σ; xg : T1 ` eg : T2 if Σ(g ) = T1 → T2.
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Operational cost semantics The operational cost semantics defines the resource consumption
of programs. It is instrumented with a non-negative resource counter that is incremented or
decremented by a constant at every step of the semantics. The semantics is parametric in the
cost that is used at each step and we call a particular set of such cost parameters a cost model.
The constants can be used to indicate the costs of storing or loading a value in the memory,
evaluating a primitive operation, binding of a value in the environment, or branching on a
Boolean value.

It is possible to further parameterize some constants to obtain a more precise cost model.
For example, the cost of calling a function may vary according to the number of the arguments.
In the following, we will show that any suitable values can be used for the constants in the
cost model and the soundness of the type system does not rely on any specific values for these
constants. In the examples, we use a cost model in which the constants are either 1 for each step
or 0 for all steps except for calls to the tick where tick(q) means that we have resource resource
usage q ∈Q.

The cost semantics is based on a big-step semantics and is formulated using an environment
E : VID → Val that is a finite mapping from a set of variable identifiers to a set of values. We write
E [x 7→ v] to denote a new environment that extends E by adding a new binding x 7→ v .

Evaluation judgements are of the form E
q

q ′ e ⇓ v where q, q ′ ∈Q+
0 . The intuitive meaning

is that under the environment E and q available resources, e evaluates to the value v without
running out of resources and q ′ resources are available after the evaluation. The evaluation
consumes δ= q −q ′ resource units. Fig. 2, Fig. 3, and Fig. 4 represent the typing rules for values,
the base typing and the evaluation rules for the language, respectively.

( V:UNIT )
v = ()

|= v : unit

( V:BOOL)
v ∈ {true , false }

|= v : bool

( V:INT )
v ∈Z

|= v : int

( V:PAIR)
|= v1 : T1 |= v2 : T2

|= (v1, v2) : T1 ∗T2

( V:NIL)
v = nil

|= v : L(T )

( V:LIST )
|= vi : T ∀i = 1, ...,n

|= [v1, ..., vn] : L(T )

Figure 2: Typing rules: values

2.2 Constant-resource programs

Informally, a program is constant resource if it has the same quantitative resource consumption
under all environments in which values have the same size.

We write |= v : T to denote that v is a well-formed value of type T . The typing rules for
values are standard [HJ03, HAH11, Ano16] and we omit them here. Let Γ be a context that maps
variable identifiers to base types, an environment E is well-formed w.r.t Γ, denoted |= E : Γ, if
∀x ∈ dom(Γ). |= E(x) : Γ(x).

Below we define the notation of size equivalence, written |v | ≈ |u|, which is a binary relation
relating two values v and u of the same type T . We write [v1, ..., vn] to denote a list of n values.
Note that we are only considering the sizes of inductive types here. The size of a value of a base
type can be arbitrary depending on the hardware architectures (e.g., an integer value can be 32
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( T:UNIT )

Σ;;` () : unit

( T:BOOL)
b ∈ {true , false }

Σ;;` b : bool

( T:INT )
n ∈Z

Σ;;` n : int

( T:VAR)
x ∈ dom(E)

Σ; x : T ` x : T

( T:B-OP)
¦ ∈ {and , or }

Σ; x1 : bool, x2 : bool ` op¦(x1, x2) : bool

( T:IB-OP)
¦ ∈ {=,<>,>,<,<=,>=}

Σ; x1 : int, x2 : int ` op¦(x1, x2) : bool

( T:I-OP)
¦ ∈ {+,−,∗, div , mod }

Σ; x1 : int, x2 : int ` op¦(x1, x2) : int

( T:FUN)
Σ(g ) = T1 → T2

Σ; x : T1 ` app(g , x) : T2

( T:LET )
Σ;Γ1 ` e1 : T1 Σ;Γ2, x : T1 ` e2 : T2

Σ;Γ1,Γ2 ` let(x,e1, x.e2) : T2

( T:IF)
Σ;Γ` et : T Σ;Γ` e f : T

Σ;Γ, x : bool ` if(x,et ,e f ) : T

( T:PAIR)

Σ; x1 : T1, x2 : T2 ` pair(x1, x2) : T1 ∗T2

( T:MATCH-P)
Σ;Γ, x1 : T1, x2 : T2 ` e : T

Σ;Γ, x : T1 ∗T2 ` match(x, (x1, x2).e) : T

( T:NIL)
T ∈ T

Σ;;` nil : L(T )

( T:CONS)

Σ; xh : T, xt : L(T ) ` cons(xh , xt ) : L(T )

( T:MATCH-L)
Σ;Γ` e1 : T1 Σ;Γ, xh : T, xt : L(T ) ` e2 : T1

Σ;Γ, x : L(T ) ` match(x,e1, (xh , xt ).e2) : T1

( T:SHARE)
Σ;Γ, x1 : T, x2 : T ` e : T1

Σ;Γ, x : T ` share(x, (x1, x2).e) : T1

( T:WEAKENING)
Σ;Γ` e : T1

Σ;Γ, x : T ` e : T1

Figure 3: Base typing rules: language

or 64 bits).

T ∈ {unit,bool, int}

|v | ≈ |u|
|v1| ≈ |u1| |v2| ≈ |u2|
|(v1, v2)| ≈ |(u1,u2)|

m = n |vi | ≈ |ui |
|[v1, ...vn]| ≈ |[u1, ...um]|

Let X ⊆ dom(Γ) be a set of variables and E1, E2 be two well-formed environments. Then E1 and
E2 are size-equivalent w.r.t X , denoted E1 ≈X E2, when they agree on the sizes of the variables in
X , that is, ∀x ∈ X .|E1(x)| ≈ |E2(x)|.

Note that ≈X is an equivalence relation, i.e., it is reflexive, symmetric and transitive. Using
size-equivalence for environments we now formally define the notation of constant-resource
expressions as follows.

Definition 1. An expression e is constant resource w.r.t X ⊆ dom(Γ), written constX (e), if for all
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(E:UNIT )

E q +K unit

q () ⇓ ()

(E:BOOL)
b ∈ {true , false }

E q +K bool

q b ⇓ b

(E:INT )
n ∈Z

E q +K int

q n ⇓ n

(E:VAR)
x ∈ dom(E)

E q +K var

q x ⇓ E(x)

(E:BIN)
v = E(x1)¦E(x2)

E q +K op

q op¦(x1, x2) ⇓ v

(E:FUN)

Σ(g ) = T1 → T2 [y g 7→ E(x)]
q

q ′ eg ⇓ v

E
q +K app

q ′ app(g , x) ⇓ v

(E:LET )

E
q −K let

q ′
1

e1 ⇓ v1 E [x 7→ v1]
q ′

1

q ′ e2 ⇓ v

E
q

q ′ let(x,e1, x.e2) ⇓ v

(E:IF-TRUE)

E(x) = true E
q −K cond

q ′ et ⇓ v

E
q

q ′ if(x,et ,e f ) ⇓ v

(E:IF-FALSE)

E(x) = false E
q −K cond

q ′ e f ⇓ v

E
q

q ′ if(x,et ,e f ) ⇓ v

(E:PAIR)
x1, x2 ∈ dom(E) v = (E(x1),E(x2))

E q +K pair

q pair(x1, x2) ⇓ v

(E:NIL)

E q +K nil

q nil ⇓ nil

(E:MATCH-P)

E(x) = (v1, v2) E [x1 7→ v1, x2 7→ v2]
q −K matchP

q ′ e ⇓ v

E
q

q ′ match(x, (x1, x2).e) ⇓ v

(E:CONS)
xh , xt ∈ dom(E) E(xh) = v1 E(xt ) = [v2, .., vn]

E q +K cons

q cons(xh , xt ) ⇓ [v1, ..., vn]

(E:MATCH-N)

E(x) = nil E
q −K matchN

q ′ e1 ⇓ v

E
q

q ′ match(x,e1, (xh , xt ).e2) ⇓ v

(E:SHARE)

E(x) = v1 E [x1 7→ v1, x2 7→ v1] \ {x}
q

q ′ e ⇓ v

E
q

q ′ share(x, (x1, x2).e) ⇓ v

(E:MATCH-L)

E(x) = [v1, ..., vn] E [xh 7→ v1, xt 7→ [v2, ..., vn]]
q −K matchL

q ′ e2 ⇓ v

E
q

q ′ match(x,e1, (xh , xt ).e2) ⇓ v

Figure 4: Evaluation rules: language

well-formed environments E1 and E2 such that E1 ≈X E2, the following statement holds.

If E1
p1

p′
1

e ⇓ v1 and E2
p2

p′
2

e ⇓ v2 then p1 −p ′
1 = p2 −p ′

2

We say that a function g (x1, . . . , xn) = eg is constant resource w.r.t X ⊆ {x1, . . . , xn} if constX (eg ).
If Y ⊆ X and E1 ≈X E2 then E1 ≈Y E2. Thus we have the following lemma.

Lemma 1. For all e, X , and Y ⊆ X , if constY (e) then constX (e).
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let rec compare(h,l) = match h with
| [] → (match l with | [] → Raml.tick 1.0; true

| y::ys → Raml.tick 1.0; false)
| x::xs → match l with | [] → Raml.tick 1.0; false

| y::ys → if (x = y) then
Raml.tick 5.0; compare(xs,ys)

else Raml.tick 5.0; false

let rec p_compare(h,l) =
let rec aux(r,h,l) = match h with
| [] → (match l with | [] → Raml.tick 1.0; r

| y::ys → Raml.tick 1.0; false)
| x::xs → match l with | [] → Raml.tick 1.0; false

| y::ys → if (x = y) then
Raml.tick 5.0; aux(r,xs,ys)

else Raml.tick 5.0; aux(false,xs,ys)
in aux(true,h,l)

Figure 5: The list comparison function compare is not constant resource, while the
manually padded function p_compare is constant resource w.r.t h and l .

Example The function compare in Fig. 5 is not constant-resource function w.r.t h and l when
the cost model is defined using tick annotations. Since the execution cost of the two branches of
the conditional dependents on the relation of x and y . The function p_compare is a manually
padded version with a dummy computation that is constant w.r.t h and l . However, it is not
constant w.r.t h. For instance, p_compare([1;2;3],[0;1;2]) has cost 16 but p_compare([1;2;1],[0;1])
has cost 12 6= 16. If we further pad the nil case with Raml.tick 5.0; aux false xs [] to make the
function to always iterate all of h’s nodes, then it is constant w.r.t h.

In Section 5, we will provide a better way to transform a program into constant with
our extended expression consume. Users insert consume expressions into program-under-
consideration then our analyzer will infer automatically the amount of resource units needed to
spend to make the program constant.

3 Type systems for lower bounds and constant resource usage

In this section we introduce two substructural resource-annotated type systems: The type
system for constant resource usage is linear and the one for lower bounds is relevant.

3.1 Background

Amortized analysis The potential method of amortized analysis has been introduced [Tar85]
to bound the worst-case resource usage of a sequence of data structure operations. The key
idea is to incorporate a non-negative potential into the analysis that can be used to pay (costly)
operations.

To statically analyze a program with the potential method, a mapping from program points
to potentials must be established. One has to show that the potential at every program point
suffices to cover the cost of any possible evaluation step and the potential of the next program
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let rec filter_succ l = match l with
| [] → Raml.tick 1.0; []
| x::xs →

if x > 0 then Raml.tick 8.0; filter_succ xs
else Raml.tick 3.0; (x+1)::filter_succ xs

let fs_twice l = filter_succ (filter_succ l)

Figure 6: Two OCaml functions with linear resource usage. The worst-case number of
ticks executed by fitler_succ(`) and fs_twice(`) is 8|`|+1 and 11|`|+2 respectively. In
the best-case the functions execute 3|`|+1 and 6|`|+2 ticks, respectively. The resource
consumption is not constant.

point. The initial potential is then an upper bound on the resource usage of the program.

Linear potential for upper bounds To automate amortized analysis, we fix a format of the
potential functions and use LP solving to find the optimal coefficients. To infer linear potential
functions, inductive data types are annotated with a non-negative rational numbers q [HJ03].
For example, the type Lq (bool ) of Boolean lists with potential q defines potential Φ([b1, . . . ,bn] :
Lq (bool)) = q ·n. Type rules statically verify that the initial potential is sufficient to cover the
operations over the data structure for any possible evaluation of the program.

This idea is best explained by example. Consider the function filter_succ below that filters
out positive numbers and increments non-positive numbers. As in RAML, we use OCaml syntax
and tick commands to specify resource usage. If we filter out a number then we have a high cost
(8 resource units) since x is, e.g., sent to an external device. If x is incremented we have a lower
cost of 3 resource units. As a result, the worst-case resource consumption of filter_succ(`) is
8|`|+1 (where 1 is for the cost that occurs in the nil case of the match). The function fs_twice(`)
applies filter_succ twice, to ` and to the result of filter_succ(`). The worst-case behavior appears
if no list element is filtered out in the first call and all elements are filtered out in the second
call. The worst-case behavior is thus 11|`|+2. These upper bounds can be expressed with the
following annotated function types, which can be derived using local type rules in Fig. 7.

filter_succ : L8(int)
1/0−−→ L0(int)

fs_twice : L11(int)
2/0−−→ L0(int)

Intuitively, the first function type states that an initial potential of 8|`|+1 is sufficient to cover the
cost of filter_succ(`) and there is 0|`′|+0 potential left where `′ is the result of the computation.
This is just one possible potential annotation of many. The right choice of the potential annota-
tion depends on the use of the function result. For example, for the inner call of filter_succ in
fs_twice we need the following annotation.

filter_succ : L11(int)
2/1−−→ L8(int)

It states that the initial potential of 11|`|+2 is sufficient to cover the cost of filter_succ(`) and
there is 8|`′|+1 potential left to be assigned to the returned list `′. The potential of the result
can then be used with the previous type of filter_succ to pay for the cost of the outer call.

filter_succ : Lp (int)
q/q ′
−−−→ Lr (int) | q ≥ q ′+1 ∧ p ≥ 8 ∧ p ≥ 3+r
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We can summarize all possible types of filter_succ with a linear constraint system. In the type
inference, we generate such a constraint system and solve it with an off-the-shelf LP solver to
derive a concrete bound. To obtain tight bounds, we perform a whole-program analysis and
minimize the coefficients in the input potential.

Surprisingly, this approach—as well as the new concepts we introduce here—can be ex-
tended to polynomial bounds [HAH12], higher-order functions [JHLH10, Ano15], polymor-
phism [JLH+09], and user-defined inductive types [JLH+09, Ano15].

3.2 Resource annotations

To explain the new ideas of this work, we focus on linear potential annotations for lists in a
first-order language. However, the results extend to and have been implement with multivariate
polynomial potential, user-defined data types and higher-order functions.

The resource-annotated types are base types in which the inductive data types are annotated
with non-negative rational numbers, called resource annotations. These numbers represent a
potential per element in the list that can be used to “pay” for resource consumption during the
evaluation of a program. The annotated data types of the language are given as follows.

A ::= unit | bool | int | Lp (A) | A∗ A (for p ∈Q+
0 )

Let A be the set of resource-annotated data types. A type context, Γr : VID →A, is a partial
mapping from variable identifiers to resource-annotated types. The underlying base type
and base type context denoted by Â, and Γ̂r respectively can be obtained by removing the
annotations. We extend all definitions such as |v |, |= E : Γ and ≈ for base data types to resource-
annotated data types by ignoring the annotations.

We now formally define the notation of potential representing how resource is associated
with runtime values. The potential of a value v of type A, written Φ(v : A), is defined by the
function Φ : Val →Q+

0 as follows.

Φ( () : unit) =Φ(b : bool) =Φ(n : int) = 0
Φ((v1, v2) : A1 ∗ A2) =Φ(v1 : A1)+Φ(v2 : A2)
Φ([v1, · · · , vn] : Lp (A)) = n·p +Σn

i=1Φ(vi : A)

Example The potential of a list v = [b1, · · · ,bn] of type Lp (bool) is n·p. Similarly, a list of lists of
Booleans values v = [v1, · · · , vn] of type Lp (Lq (bool)), where vi = [bi 1, · · · ,bi mi ], has the potential
n·p + (m1 +·· ·+mn)·q .

Let Γr be a context and E be a well-formed environment w.r.t Γr . The potential of X ⊆
dom(Γr ) under E is defined as ΦE (X : Γr ) =Σx∈XΦ(E(x) : Γr (x)). The potential of Γr is ΦE (Γr ) =
ΦE (dom(Γr ) : Γr ). Note that if x 6∈ X then ΦE (X )) =ΦE [x 7→v](X ). The following lemma states that
the potential is the same under two well-formed size-equivalent environments.

Lemma 2. If E1 ≈X E2 then ΦE1 (X : Γr ) =ΦE2 (X : Γr ).

Annotated first-order data types are given as follows, where q and q ′ are rational numbers.

F ::= A1
q/q ′
−−−→ A2

Let F be the set of the annotated first-order types. A resource-annotated signature Σr :
FID →℘(F )\{;} is a partial mapping from function identifiers to a non-empty sets of annotated
first-order types. That means a function can have different resource annotations depending on
the context. The underlying base types are denoted by F̂ . and the underlying base signature is
denoted by Σ̂r where Σ̂r ( f ) = �Σr ( f ).
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(A:UNIT )

Σr ;; K unit

0 () : unit

(A:BOOL)
b ∈ {true , false }

Σr ;; K bool

0 b : bool

(A:INT )
n ∈Z

Σr ;; K int

0 n : int

(A:VAR)

Σr ; x : A K var

0 x : A

(A:B-OP)
¦ ∈ {and , or }

Σr ; x1 : bool, x2 : bool K op

0 op¦(x1, x2) : bool

(A:IB-OP)
¦ ∈ {=,<>,>,<,<=,>=}

Σr ; x1 : int, x2 : int K op

0 op¦(x1, x2) : bool

(A:I-OP)
¦ ∈ {+,−,∗, div , mod }

Σr ; x1 : int, x2 : int K op

0 op¦(x1, x2) : int

(A:FUN)

Σr ( f ) = A1
q/q ′
−−−→ A2

Σr ; x : A1
q +K app

q ′ app( f , x) : A2

(A:LET )

Σr ;Γr
1

q −K let

q ′
1

e1 : A1 Σr ;Γr
2, x : A1

q ′
1

q ′ e2 : A2

Σr ;Γr
1,Γr

2
q

q ′ let(x,e1, x.e2) : A2

(A:IF)

Σr ;Γr q −K cond

q ′ et : A Σr ;Γr q −K cond

q ′ e f : A

Σr ;Γr , x : bool
q

q ′ if(x,et ,e f ) : A

(A:PAIR)

Σr ; x1 : A1, x2 : A2
K pair

0 pair(x1, x2) : A1 ∗ A2

(A:MATCH-P)

Σr ;Γr , x1 : A1, x2 : A2
q −K matchP

q ′ e : A

Σr ;Γr , x : A1 ∗ A2
q

q ′ match(x, (x1, x2).e) : A

(A:NIL)
A ∈A

Σr ;; K nil

0 nil : Lp (A)

(A:CONS)

Σr ; xh : A, xt : Lp (A)
p +K cons

0 cons(xh , xt ) : Lp (A)

(A:MATCH-L)

Σr ;Γr q −K matchN

q ′ e1 : A1 Σr ;Γr , xh : A, xt : Lp (A)
q +p −K matchL

q ′ e2 : A1

Σr ;Γr , x : Lp (A)
q

q ′ match(x,e1, (xh , xt ).e2) : A1

(A:SHARE)

Σr ;Γr , x1 : A1, x2 : A2
q

q ′ e : B .(A | A1, A2)

Σr ;Γr , x : A
q

q ′ share(x, (x1, x2).e) : B

Figure 7: Common typing rules: upper bounds, constant, and lower bounds

3.3 Type system for constant resource consumption

The typing rules of the constant-resource type system define judgments of the form

Σr ;Γr q

q ′ e : A
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where e is an expression and q, q ′ ∈Q+
0 . The intended meaning is that in the environment E ,

q+ΦE (Γr ) resource units are sufficient to evaluate e to a value v with type A and there are exactly
q ′+Φ(v : A) resource units left over.

The typing rules form a linear type system. It ensures that every variable is used exactly once
by allowing exchange but not weakening or contraction [Wal02]. The rules can be organized into
syntax directed and structural rules.

Syntax-directed rules The syntax-directed rules listed in Fig. 7 are shared among all type
systems. Rules like A:VAR and A:B-OP for leaf expressions (e.g., variable, binary operations,
pairs) have fixed costs as specified by the constants K x . Note that we require all available
potential to be spent. The cost of the function call is represented by the constant K app in the
rule A:FUN and the argument carries the potential to pay for the function execution. In the rule
A:LET, the cost of binding is represented by the constant K let . The potentials carried by the
contexts Γr

1 and Γr
2 are passed sequentially through the sub derivations. Note that the contexts

are disjoint since our type system is linear. Multiple uses of variables must be introduced through
the rule A:SHARE. The rule A:IF is the key rule for ensuring constant resource usage. By using
the same context Γr for typing both et and e f , we ensure that the conditional expression has the
same resource usage in size-equivalent environments independent of the value of the Boolean
variable x. The rules for inductive data types are crucial for the interaction of the linear potential
annotations with the constant potential. The rule A:CONS shows how constant potential can
be associated with a new data structure. The dual is the rule A:MATCH-L, which shows how
potential associated with data can be released. It is important that these transitions are made in
a linear fashion: potential is neither lost or gained.

Sharing The share expression makes multiple uses of a variable explicit. While multiple uses of
a variable seem to be in conflict with the linear type discipline, the sharing relation .(A | A1, A2)
ensures that potential is treated in a linear way. It apportions potential to ensure that the total
potential associated with all uses is equal to the potential initially associated with the variable.
This relation is only defined for structurally-identical types which differ in at most the resource
annotations as follows.

A ∈ {unit,bool, int}

.(A | A, A)

.(A | A1, A2) p = p1 +p2

.(Lp (A) | Lp1 (A1),Lp2 (A2))

.(A | A1, A2) .(B | B1,B2)

.(A∗B | A1 ∗B1, A2 ∗B2)

Lemma 3. If .(A | A1, A2) then Â = Â1 = Â2 and ∀v. Φ(v : A) =Φ(v : A1)+Φ(v : A2)

Proof. By induction on the definition of the sharing relation.

Structural rules To allow more programs to be typed we add two structural rules to the type
system which can be applied to every expression. These rules are specific to the the constant-
resource type system.

(C:WEAKENING)

Σr ;Γr q

q ′ e : B .(A | A, A)

Σr ;Γr , x : A
q

q ′ e : B

(C:RELAX)

Σr ;Γr p

p′ e : A q ≥ p
q −p = q ′−p ′

Σr ;Γr q

q ′ e : A
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The rule C:RELAX reflects the fact that if it is sufficient to evaluate e with p available resource
units and there are p ′ resource units left over then e can be evaluated with p + c resource units
and there are exactly p ′+ c resource left over, where c ∈ Q+

0 . Rule C:WEAKENING states that
an extra variable can be added into the given context if its potential is zero. The condition is
enforced by .(A | A, A) since Φ(v : A) =Φ(v : A)+Φ(v : A) or Φ(v : A) = 0. The rules can be used
in branchings such as the conditional or the pattern match to ensure that subexpressions are
typed using the same contexts and potential annotations.

Example Consider again the function p_compare in Fig. 5 in which the resource consumption
is defined using tick annotations. The resource usage of p_compare(h,`) is constant w.r.t h, that
is, it is exactly 5|h|+1. This can be reflected by the following type.

p_compare : (L5(int),L0(int))
1/0−−→ bool

It can be understood as follows. If the input list h carries 5 potential units per element then it is
sufficient to cover the cost of p_compare(h,`), no potential is wasted, and 0 potential is left.

Soundness That soundness theorem states that if e is well-typed in the resource type system
and it evaluates to a value v then the difference between the initial and the final potential
is the net resources usage. Moreover, if the potential annotations of the return value and all
variables not belonging to a set X ⊆ dom(Γr ) are zero then e is constant-resource w.r.t X . We
write constX (e) if Σr ;Γr q

q ′ e : A, .(A | A, A), and ∀x ∈ dom(Γr ) \ X . .(Γr (x) | Γr (x),Γr (x)).

Theorem 1. If |= E : Γr , E ` e ⇓ v, and Σr ;Γr q

q ′ e : A, then for all p,r ∈ Q+
0 such that p =

q +ΦE (Γr )+ r , there exists p ′ ∈Q+
0 satisfying E

p

p′ e ⇓ v and p ′ = q ′+Φ(v : A)+ r .

Proof. The proof is done by induction on the length of the derivation of the evaluation judgment
and the typing judgment with lexical order, in which the derivation of the evaluation judgment
takes priority over the typing derivation. We need to do induction on the length of both evalua-
tion and typing derivations since on one hand, an induction of only typing derivation would
fail for the case of function application, which increases the length of the typing derivation,
while the length of the evaluation derivation never increases. On the other hand, if the rule
C:WEAKENING is final step in the derivation, then the length of typing derivation decreases,
while the length of evaluation derivation is unchanged.

A:SHARE Assume that the typing derivation ends with an application of the rule A:SHARE, thus
Σr ;Γr , x1 : A1, x2 : A2

q

q ′ e : B and .(A|A1, A2).
Let E1 = E \ {x}∪ {[x1 7→ E(x), x2 7→ E(x)]}. Since |= E : Γr , x : A and following the property of

the share relation we have |= E1 : Γr , x1 : A1, x2 : A2. By the induction hypothesis for e, it holds
that for all p,r ∈Q+

0 such that p = q +ΦE1 (Γr , x1 : A1, x2 : A2)+ r , there exists p ′ ∈Q+
0 satisfying

E1
p

p′ e ⇓ v and p ′ = q ′+Φ(v : B)+ r .
BecauseΦ(E (x) : A) =Φ(E1(x1) : A1)+Φ(E1(x2) : A2) andΦE (Γr ) =ΦE1 (Γr ) =ΦE\{x}(Γr ), thus

p = q +ΦE (Γr , x : A)+ r and there exists p ′ satisfying E
p

p′ share(x, (x1, x2).e) ⇓ v .

C:WEAKENING Suppose that the typing derivation ends with an application of the rule C:WEAKENING.
Thus we have Σr ;Γr q

q ′ e : B , in which the data type A satisfies .(A | A, A).
Since |= E : Γr , x : A, it follows |= E : Γr . By the induction hypothesis for e, it holds that for all

p,r ∈Q+
0 such that p = q+ΦE (Γr )+r , there exists p ′ ∈Q+

0 satisfying E
p

p′ e ⇓ v and p ′ = q ′+Φ(v :
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B)+ r . By the property of the share relation, Φ(a : A) = 0, then we have p = q +ΦE (Γr , x : A)+ r ,
E

p

p′ e ⇓ v and p ′ = q ′+Φ(v : B)+ r as required.

C:RELAX Suppose that the typing derivation ends with an application of the rule C:RELAX,
thus we have Σr ;Γr q1

q ′
1

e : A, q ≥ q1, and q −q1 = q ′−q ′
1.

For all p,r ∈Q+
0 such that p = q +ΦE (Γr )+ r = q1 +ΦE (Γr )+ (q −q1)+ r , we have |= E : Γr .

By the induction hypothesis for e in the premise, there exists p ′ ∈Q+
0 satisfying E

p

p′ e ⇓ v and
p ′ = q ′

1 +Φ(v : A)+ (q −q1)+ r = q ′+Φ(v : A)+ r .

A:VAR Assume that e is a variable x. If Σr ; x : A K var

0 x : A. Thus for all p,r ∈ Q+
0 such that

p = K var +Φ(v : A)+ r , there exists p ′ =Φ(v : A)+ r satisfying E
p

p′ e ⇓ v .

A:UNIT It is similar to the case A:VAR.

A:BOOL It is similar to the case A:VAR.

A:INT It is similar to the case A:VAR.

A:B-OP Assume that e is an expression of the form op¦(x1, x2), where ¦ = {and , or }. Thus
Σr ; x1 : bool, x2 : bool K op

0 e : bool and |= E : {x1 : bool, x2 : bool}. We have E K op

0 e ⇓ v , thus
for all p,r ∈Q+

0 such that p = K op + r = K op +ΦE (x1 : bool, x2 : bool)+ r , there exists p ′ =Φ(v :

bool)+ r = r satisfying E
p

p′ e ⇓ v .

A:I-OP It is similar to the case A:B-OP.

A:IB-OP It is similar to the case A:B-OP.

A:CONS If e is of the form cons(x1, x2), then the type derivation ends with an application
of the rule A:CONS and the evaluation ends with the application of the rule E:CONS. Thus

Σr ; x1 : A, x2 : Lp1 (A)
p1 +K cons

0 e : Lp1 (A) and |= E : {x1 : A, x2 : Lp1 (A)}.
We have E K cons

0 e ⇓ [v1, ..., vn], where E (x1) = v1 and E (x2) = [v2, · · · , vn]. Let Γr = xh : A, xt :
Lp1 (A), for all p,r ∈ Q+

0 such that p = p1 +K cons +ΦE (Γr )+ r , there exists p ′ ∈ Q+
0 satisfying

p ′ =Φ([v1, ..., vn] : Lp1 (A))+ r =ΦE (Γr )+p1 + r and E
p

p′ e ⇓ [v1, ..., vn].

A:PAIR It is similar to the case A:CONS.

A:NIL It is similar to the case A:CONS.

A:MATCH-P Suppose that the typing derivation Σr ;Γr , x : A1 ∗ A2
q

q ′ match(x, (x1, x2).e) : A

ends with an application of the rule A:MATCH-P. Thus Σr ;Γr , x1 : A1, x2 : A2
q −K matchP

q ′ e : A and
|= E : Γr , x : A1 ∗ A2.

Let E1 = E [x1 7→ v1, x2 7→ v2] and Γr
1 = Γr , x1 : A1, x2 : A2. Since |= v1 : A1, |= v2 : A2, and

|= E : Γr it holds that |= E1 : Γr
1. For all p,r ∈ Q+

0 such that p = q +ΦE (Γr , x : A1 ∗ A2)+ r , thus

p −K matchP = q −K matchP +ΦE1 (Γr
1)+ r , by the induction hypothesis for e, there exists p ′ ∈Q+

0
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satisfying p ′ = q ′+Φ(v : A)+ r and E1
p −K matchP

p′ e ⇓ v . Hence, by the rule E:MATCH-P, there

exists p ′ = q ′+Φ(v : A)+ r satisfying E
p

p′ match(x, (x1, x2).e) ⇓ v .

A:FUN Assume that e is a function application of the form app( f , x). Thus Σr ; x : A1
q +K app

q ′ e :

A2 and Σr ( f ) = A1
q/q ′
−−−→ A2. Because the considering program is well-formed, there exists

a well-typed expression e f under the typing context Γr
1 = y f̂ : A1 and the signature Σr , or

Σr ;Γr
1

q

q ′ e f : A2.

Let Γr = x : A1, E(x) = v1 and E1 = [y f̂ 7→ v1], since |= E : Γr , it follows that |= E1 : Γr
1. For all

p,r ∈Q+
0 such that p = q +K app +ΦE (Γr )+r , since ΦE1 (Γr

1) =Φ(E1(y f̂ ) : A1) =ΦE (Γr ) =Φ(E (x) :
A1), it holds that p −K app = q +ΦE1 (Γr

1)+ r . By the induction hypothesis for e f , there exists

p ′ ∈Q+
0 satisfying p ′ = q ′+Φ(v : A2)+ r and E1

p1

p′
1

e f̂ ⇓ v . Hence, E
p

p′ e ⇓ v .

A:IF Suppose that e is an expression of the form if(x,et ,e f ). Then one of the rules E:IF-TRUE

and E:IF-FALSE has been applied in the evaluation derivation depending on the value of x.
Assume that the variable x is assigned the value true in E , or E(x) = true . The typing rule

for e has been derived by an application of the rule A:IF using the premise on the left thus

Σr ;Γr q −K cond

q ′ et : A.
Let Γr

1 = Γr , x : bool, since |= E : Γr
1, it follows that |= E : Γr . For all p,r ∈ Q+

0 such that

p = q +ΦE (Γr
1)+ r , since ΦE (Γr ) =ΦE (Γr

1) thus p1 = p −K cond = q −K cond +ΦE (Γr )+ r . By the

induction hypothesis for et , there exists p ′
1 ∈Q+

0 satisfying E
p1

p′
1

et ⇓ v and p ′
1 = q ′+Φ(v : A).

Hence, by the rule E:IF-TRUE, there exists p ′ = p ′
1 satisfying E

p

p′ e ⇓ v and p ′ = q ′+Φ(v : A). If
x is assigned the value false in E then it is similar to the case E(x) = true .

A:MATCH-L It is the same as the case of a conditional expression. The evaluation derivation
applies one of the rules E:MATCH-N and E:MATCH-L depending on the value of x.

Assume that x is assigned the value [v1, ...., vn] under E , or E(x) = [v1, ..., vn]. Then, the
evaluation derivation ends with an application of the rule E:MATCH-L. Let E1 = E [xh 7→ v1, xt 7→
[v2, ..., vn]] and Γr

1 = Γr , xh : A, xt : Lp1 (A), the typing derivation ends with an application of the

rule A:MATCH-L, thus Σr ;Γr
1

q +p1 −K matchL

q ′ e2 : A1.
Since |= [v1, ..., vn] : Lp1 (A), we have |= vi : A,∀i = 1, ...,n. Hence, it holds that |= v1 : A and

|= [v2, ..., vn] : Lp1 (A). Finally, we have |= E1 : Γr
1 (since |= E : Γr implies |= E1 : Γr ).

For all p,r ∈Q+
0 such that p = q+ΦE (Γr , x : Lp1 (A))+r , becauseΦE (Γr , x : Lp1 (A)) =ΦE (Γr )+

n.p1+Σn
i=1Φ(vi : A),ΦE1 (Γr

1) =ΦE1 (Γr )+(n−1).p1+Σn
i=1Φ(vi : A) andΦE1 (Γr ) =ΦE (Γr ), thus we

have ΦE1 (Γr
1) =ΦE (Γr , x : Lp1 (A))−p1. Thus p2 = p −K matchL = q +p1 −K matchL +ΦE1 (Γr

1)+ r .

By the induction hypothesis for e2, there exists p ′
2 ∈Q+

0 satisfying E1
p2

p′
2

e2 ⇓ v and p ′
2 = q ′+Φ(v :

A1). Hence, there exists p ′ = p ′
2 such that E

p

p′ e ⇓ v . If E(x) = nil then it is similar to the case
A:MATCH-P.

A:LET Assume that e is an expression of the form let(x,e1, x.e2). Hence, the evaluation deriva-
tion ends with an application of the rule E:LET. Let E1 = E [x 7→ v1] and Γr = Γr

1,Γr
2. The

typing derivation ends with an application of the rule A:LET, thus Σr ;Γr
1

q −K let

q ′
1

e1 : A1 and

Σr ;Γr
2, x : A1

q ′
1

q ′ e2 : A2.
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For all p,r ∈Q+
0 such that p = q+ΦE (Γr )+r , thus p1 = p−K let = q−K let+ΦE (Γr

1)+ΦE (Γr
2)+r .

Since |= E : Γr , we have |= E : Γr
1. By the induction hypothesis for e1, there exists p ′

1 ∈Q+
0 satisfying

E
p1

p′
1

e1 ⇓ v1 and p ′
1 = q ′

1 +Φ(v1 : A1)+ΦE (Γr
2)+ r .

We have |= E : Γr
2, thus |= E1 : Γr

2, x : A1. Again by the induction hypothesis for e2, with

p2 = p−K let−(p1−p ′
1) = p ′

1 = q ′
1+ΦE1 (Γr

2, x : A1)+r , there exists p ′
2 ∈Q+

0 satisfying E1
p2

p′
2

e2 ⇓ v

and p ′
2 = q ′+Φ(v : A2)+ r . Hence, by the rule E:LET, there exists p ′ = p ′

2 satisfying E
p

p′ e ⇓ v
and p ′ = q ′+Φ(v : A2).

Theorem 2. If |= E : Γr , E ` e ⇓ v, Σr ;Γr q

q ′ e : A, . (A | A, A), and ∀x ∈ dom(Γr ) \ X . . (Γr (x) |
Γr (x),Γr (x)) then e is constant resource w.r.t X ⊆ dom(Γr ).

Proof. First, we prove that if E
p

p′ e ⇓ v then p−p ′ = q+ΦE (Γr )−(q ′+Φ(v : A)). Suppose p−p ′ 6=
q +ΦE (Γr )−(q ′+Φ(v : A)), there exists always some r1,r2 ∈Q+

0 such that p+r1 = q +ΦE (Γr )+r2.

Since E
p

p′ e ⇓ v , we have E
p + r1

p′+ r1
e ⇓ v . By Theorem 1, p ′+ r1 = q ′+Φ(v : A)+ r2, thus the

assumption is contradictory.
Consider any E1 and E2 such that E1 ≈X E2, hence E1 ` e ⇓ v1 and E2 ` e ⇓ v2. For all

p1, p ′
1 ∈Q+

0 such that E1
p1

p′
1

e ⇓ v1, we have p1−p ′
1 = q +ΦE1 (Γr )− (q ′+Φ(v1 : A)). Similarly, for

all p2, p ′
2 ∈Q+

0 such that E2
p2

p′
2

e ⇓ v2, p2 −p ′
2 = q +ΦE2 (Γr )− (q ′+Φ(v2 : A)). Since ΦE1 (X ) =

ΦE2 (X ) by Lemma 2, ∀x ∈ dom(Γr ) \ X .Φ(Ei (x) : Γr (x)) = 0, and Φ(vi : A) = 0, i = 1,2. Thus
p1 −p ′

1 = p2 −p ′
2.

3.4 Type system for upper bounds

If we treat potential as an affine resource then we arrive that the original amortized analysis for
upper bounds [HJ03]. To this end, we allow unrestricted weakening and a relax rule in which we
can waste potential.

(U:RELAX)

Σr ;Γr p

p′ e : A q ≥ p q −p ≥ q ′−p ′

Σr ;Γr q

q ′ e : A

(U:WEAKENING)

Σr ;Γr q

q ′ e : B

Σr ;Γr , x : A
q

q ′ e : B

(U:SUBTYPE)

Σr ;Γr q

q ′ e : A B <: A

Σr ;Γr q

q ′ e : B

(U:SUPERTYPE)

Σr ;Γr , x : B
q

q ′ e : C B <: A

Σr ;Γr , x : A
q

q ′ e : C

Additionally, we can use subtyping to waste linear potential [HJ03]. (See the converse definition
for subtyping for lower bounds below.) Similarly to Theorem 1, we can prove the following
theorem.

Theorem 3. If |= E : Γr , E ` e ⇓ v, and Σr ;Γr q

q ′ e : A, then for all p,r ∈ Q+
0 such that p ≥

q +ΦE (Γr )+ r , there exists p ′ ∈Q+
0 satisfying E

p

p′ e ⇓ v and p ′ ≥ q ′+Φ(v : A)+ r .

3.5 Type system for lower bounds

The type judgements for lower bounds have the same form and data types as the type judgements
for constant resource usage and upper bounds. However, the intended meaning of the judgment
Σr ;Γr q

q ′ e : A is the following. Under given environment E , less than q +ΦE (Γ) resource units
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are not sufficient to evaluate e to a value v so that more than q ′+Φ(v : A) resource units are left
over.

The syntax-directed typing rules are the same as the rules in constant-resource type system
as given in Fig. 7. In addition, we have the structural rules in Fig. 8. The rule L:RELAX is dual to
U:RELAX. In L:RELAX, potential is treated as a relevant resource: We are not allowed to waste
potential but we can create potential out of the blue if we ensure that we either use it or pass
it to the result. The same idea is formalized for the linear potential with the subtyping rules
L:SUBTYPE and L:SUPERTYPE. The subtyping relation is defined as follows.

A∈{unit,bool, int}

A <: A

A1<:A2 p1≤p2

Lp1 (A1) <: Lp2 (A2)

A1<:A2 B1<:B2

A1 ∗ A2 <: B1 ∗B2

It holds that if A <: B then Â = B̂ and Φ(v : A) ≤ Φ(v : B). Suppose that it is not sufficient to
evaluate e with p available resource units to get p ′ resource units left over. L:SUBTYPE reflects
the fact that we also cannot evaluate e with p resources get more than p ′ resource units after
the evaluation. L:SUPERTYPE says that we also cannot evaluate e with less than p and get p ′
resource units afterwards. The rule A:RELAX reflects the fact that it is impossible to evaluate e
with p + c and gets more than p ′+ c where c ∈Q+

0 .

Example Consider again the functions filter_succ and fs_twice given in Fig. 6 in which the
resource consumption is defined using tick annotations. The best-case resource usage of
filter_succ(`) is 3|`| + 1 and best-case resource usage of fs_twice(`) is 6|`| + 2. This can be
reflected by the following function types for lower bounds.

filter_succ : L3(int)
1/0−−→ L0(int)

fs_twice : L6(int)
2/0−−→ L0(int)

To derive the lower bound for fs_twice, we need the same compositional reasoning as for the
derivation of the upper bound. For the inner call of filter_succ we use the type

filter_succ : L6(int)
2/1−−→ L3(int) .

It can be understood as follows. If the input list carries 6 potential units per element then, for
each element, we can either use all 6 (if case) or we can use 3 and assign 3 to the output (else
case).

The type system for lower bounds is a relevant type system [Wal02]. That means every
variable is used at least once by allowing exchange and contraction properties, but not weakening.
However, we as in the constant-time type system we allow a restricted from of weakening if
the potential annotations are zero using the rule L:WEAKENING. The following lemma states
formally the contraction property which is derived in Fig. 9.

Lemma 4. If Σr ;Γr , x1 : A, x2 : A
q

q ′ e : B then Σr ;Γr , x : A
q

q ′ share(x, (x1, x2).e) : B

Proof. The proof is done by applying the share and supertype rules. Given an annotated data
type A, there exists always data types A1 and A2 such that .(A | A1, A2), A1 <: A, and A2 <: A.
The typing derivation is given in Fig. 9.

The following theorems establish the soundness of the analysis. Theorem 5 is proved by
induction and Theorem 4 follows by contradiction.
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(L:RELAX)

Σ;Γ
p

p′ e : A q≥p q−p≤q ′−p ′

Σ;Γ
q

q ′ e : A

(L:SUBTYPE)

Σ;Γ
q

q ′ e : A A<:B

Σ;Γ
q

q ′ e : B

(L:WEAKENING)

Σr ;Γr q

q ′ e : B .(A | A, A)

Σr ;Γr , x : A
q

q ′ e : B

(L:SUPERTYPE)

Σ;Γ, x : B
q

q ′ e : C A <: B

Σ;Γ, x : A
q

q ′ e : C

Figure 8: Structural rules for lower bounds.

(L:CONTRACTION)
Σ;Γ, x1 : A, x2 : A

q

q ′ e : B A2 <: A

Σ;Γ, x1 : A, x2 : A2
q

q ′ e : B A1 <: A

Σ;Γ, x1 : A1, x2 : A2
q

q ′ e : B .(A | A1, A2)

Σ;Γ, x : A
q

q ′ share(x, (x1, x2).e) : B

Figure 9: Derivation of the contraction rule for lower-bounds.

Theorem 4. Let |= E : Γr , E ` e ⇓ v, and Σr ;Γr q

q ′ e : A. Then for all p,r ∈ Q+
0 such that p <

q +ΦE (Γr )+ r , there exists no p ′ ∈Q+
0 satisfying E

p

p′ e ⇓ v and p ′ ≥ q ′+Φ(v : A)+ r .

Proof. The proof is relied on Theorem 5. For all p,r ∈Q+
0 such that p < q +ΦE (Γr )+ r , assume

that there exists some p ′ ∈ Q+
0 such that E

p

p′ e ⇓ v and p ′ ≥ q ′+Φ(v : A)+ r . Thus we have
p −p ′ < q +ΦE (Γr )− (q ′+Φ(v : A)).

On the other hand, it holds that q +ΦE (Γr )− (q ′+Φ(v : A)) ≤ p − p ′. The assumption is
contradictory.

Theorem 5. Let |= E : Γr , E ` e ⇓ v, and Σr ;Γr q

q ′ e : A. Then for all p, p ′ ∈ Q+
0 such that

E
p

p′ e ⇓ v we have q +ΦE (Γr )− (q ′+Φ(v : A)) ≤ p −p ′.

Proof. The proof is done by induction on the length of the derivation of the evaluation judgment
E

p

p′ e ⇓ v and the typing judgment Σ;Γ
q

q ′ e : A with lexical order, in which the derivation of
the evaluation judgment takes priority over the typing derivation. We need to do induction on
the length of both evaluation and typing derivations since on one hand, an induction of only
typing derivation would fail for the case of function application, which increases the length of
the typing derivation, while the length of the evaluation derivation never increases. On the other
hand, if the rules L:WEAKENING and A:SHARE are final step in the derivation, then the length of
typing derivation decreases, while the length of evaluation derivation is unchanged.

A:SHARE Assume that the typing derivation ends with an application of the rule A:SHARE, thus
Σr ;Γr , x1 : A1, x2 : A2

q

q ′ e : B and .(A|A1, A2). Let E1 = E \ {x}∪ {[x1 7→ E(x), x2 7→ E(x)]}. Since
|= E : Γr , x : A and following the property of the share relation we have |= E1 : Γr , x1 : A1, x2 : A2.
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For all p, p ′ ∈Q+
0 such that E

p

p′ share(x, (x1, x2).e ⇓ v , by the rule E:SHARE we have E1
p

p′ e ⇓
v . Hence, by the induction hypothesis for e in the premise, it holds that q +ΦE1 (Γr , x1 : A1, x2 :
A2)− (q ′+Φ(v : B)) ≤ p −p ′.

Because Φ(E(x) : A) =Φ(E1(x1) : A1)+Φ(E1(x2) : A2) and ΦE (Γr ) =ΦE1 (Γr ) =ΦE\{x}(Γr ), we
have q +ΦE (Γr , x : A)− (q ′+Φ(v : B)) ≤ p −p ′.

L:WEAKENING Suppose that the typing derivation Σr ;Γr , x : A
q

q ′ e : B ends with an applica-

tion of the rule L:WEAKENING. Thus we have Σr ;Γr q

q ′ e : B , in which the data type A satisfies
.(A | A, A). Since |= E : Γr , x : A, it follows that |= E : Γr .

For all p, p ′ ∈Q+
0 such that E

p

p′ e ⇓ v , by the induction hypothesis for e in the premise, it
holds that q +ΦE (Γr )− (q ′+Φ(v : B)) ≤ p −p ′. By the property of the share relation, Φ(a : A) = 0,
hence we have q +ΦE (Γr , x : A)− (q ′+Φ(v : B)) ≤ p −p ′.

L:RELAX Suppose that the typing derivation ends with an application of the rule L:RELAX, thus
we have Σr ;Γr q1

q ′
1

e : A, q ≥ q1, and q −q1 ≤ q ′−q ′
1.

For all p, p ′ ∈Q+
0 such that E

p

p′ e ⇓ v , we have |= E : Γr , hence by the induction hypothesis
for e in the premise, it holds that q1 +ΦE (Γr )− (q ′

1 +Φ(v : A)) ≤ p −p ′. We have q +ΦE (Γr )−
(q ′+Φ(v : A)) = q1+ΦE (Γr )−(q ′

1+Φ(v : A))+((q −q1)−(q ′−q ′
1)). Since q −q1 ≤ q ′−q ′

1, it holds
that q +ΦE (Γr )− (q ′+Φ(v : A)) ≤ q1 +ΦE (Γr )− (q ′

1 +Φ(v : A)) ≤ p −p ′.

A:VAR Assume that e is a variable x. If Σr ; x : A K var

0 x : A. Thus for all p, p ′ ∈Q+
0 such that

E
p

p′ e ⇓ v , we have p = p ′+K var , hence K var +Φ(E(x) : A)−Φ(v : A) ≤ p −p ′ = K var .

A:UNIT It is similar to the case A:VAR.

A:BOOL It is similar to the case A:VAR.

A:INT It is similar to the case A:VAR.

A:B-OP Assume that e is an expression of the form op¦(x1, x2), where ¦ = {and , or }. Thus
Σr ; x1 : bool, x2 : bool K op

0 e : bool and |= E : {x1 : bool, x2 : bool}.

For all p, p ′ ∈Q+
0 such that E

p

p′ e ⇓ v , we have K op +ΦE (x1 : bool, x2 : bool)−Φ(v : bool) =
K op ≤ p −p ′ = K op .

A:IB-OP It is similar to the case A:B-OP.

A:I-OP It is similar to the case A:B-OP.

A:CONS If e is of the form cons(x1, x2), then the typing derivation ends with an application of
the rule A:CONS and the evaluation derivation ends with the application of the rule E:CONS.

Thus Σr ; x1 : A, x2 : Lp1 (A)
p1 +K cons

0 e : Lp1 (A) and |= E : {x1 : A, x2 : Lp1 (A)}.
For all p, p ′ ∈ Q+

0 such that E
p

p′ e ⇓ v , we have p − p ′ = K cons , E(x1) = v1 and E(x2) =
[v2, · · · , vn]. LetΓr = xh : A, xt : Lp1 (A), it holds that p1+K cons+ΦE (Γr )−(Φ([v1, ..., vn] : Lp1 (A))) =
K cons ≤ p −p ′.
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A:PAIR It is similar to the case A:CONS.

A:NIL It is similar to the case A:CONS.

A:MATCH-P Suppose that the typing derivation Σr ;Γr , x : A1 ∗ A2
q

q ′ match(x, (x1, x2).e) : A

ends with an application of the rule A:MATCH-P. Thus Σr ;Γr , x1 : A1, x2 : A2
q −K matchP

q ′ e : A and
|= E : Γ, x : A1 ∗ A2.

Let E1 = E [x1 7→ v1, x2 7→ v2] and Γr
1 = Γr , x1 : A1, x2 : A2, since |= v1 : A1, |= v2 : A2, and

|= E : Γr it holds that |= E1 : Γr
1.

For all p, p ′ ∈Q+
0 such that E

p

p′ e ⇓ v , by the rule E:MATCH-P we have E1
p −K matchP

p′ e ⇓ v .

Hence, by the induction hypothesis for e in the premise, it holds that q −K matchP +ΦE1 (Γr
1)−

(q ′+Φ(v : A)) ≤ p −K matchP −p ′.
Since ΦE (Γr , x : A1 ∗ A2) =ΦE1 (Γr

1), it follows that q +ΦE (Γr , x : A1 ∗ A2)− (q ′+Φ(v : A)) ≤
p −p ′.

A:FUN Assume that e is a function application of the form app( f , x). Thus Σr ; x : A1
q +K app

q ′ e :

A2 and Σr ( f ) = A1
q/q ′
−−−→ A2. Because the considering program is well-formed, there exists

a well-typed expression e f under the typing context Γr
1 = y f̂ : A1 and the signature Σr , or

Σr ;Γr
1

q

q ′ e f : A2.

Let Γr = x : A1, E(x) = v1 and E1 = [y f̂ 7→ v1], since |= E : Γr , it follows that |= E1 : Γr
1. For all

p, p ′ ∈Q+
0 such that E

p

p′ e ⇓ v , we have E1
p −K app

p′ e f̂ ⇓ v . Hence, by the induction hypothesis

for e f , it holds that q +ΦE1 (Γr
1)− (q ′+Φ(v : A2)) ≤ p −K app −p ′.

Since ΦE1 (Γr
1) = Φ(E1(y f̂ ) : A1) = ΦE (Γr ) = Φ(E(x) : A1), it follows that q +K app +Φ(E(x) :

A1)− (q ′+Φ(v : A2)) ≤ p −p ′.

A:IF Suppose that e is an expression of the form if(x,et ,e f ). Then one of the rules E:IF-TRUE

and E:IF-FALSE has been applied in the evaluation derivation depending on the value of x.
Assume that the variable x is assigned the value true in E , or E(x) = true . The typing rule

for e has been derived by an application of the rule A:IF using the premise on the left thus

Σr ;Γr q −K cond

q ′ et : A. Let Γr
1 = Γr , x : bool, since |= E : Γr

1, it follows that |= E : Γr .

For all p, p ′ ∈ Q+
0 such that E

p

p′ e ⇓ v , by the rule E:IF-TRUE we have E
p −K cond

p′ et ⇓ v .

Hence, by the induction hypothesis for et , it holds that q −K cond +ΦE (Γr )− (q ′+Φ(v : A)) ≤
p −K cond −p ′.

Because ΦE (Γr ) =ΦE (Γr
1), it follows q +ΦE (Γr

1)− (q ′+Φ(v : A)) ≤ p −p ′. If E(x) = false then
the proof is similar.

A:MATCH-L It is the same as the case of a conditional expression. The evaluation derivation
applies one of the rules E:MATCH-N and E:MATCH-L depending on the value of x.

Assume that x is assigned the value [v1, ...., vn] under E , or E(x) = [v1, ..., vn]. Then, the
evaluation derivation ends with an application of the rule E:MATCH-L. Let E1 = E [xh 7→ v1, xt 7→
[v2, ..., vn]] and Γr

1 = Γr , xh : A, xt : Lp1 (A), the typing derivation ends with an application of the

rule A:MATCH-L, thus Σr ;Γr
1

q +p1 −K matchL

q ′ e2 : A1.
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Since |= [v1, ..., vn] : Lp1 (A), we have |= vi : A,∀i = 1, ...,n. Hence, it holds that |= v1 : A and
|= [v2, ..., vn] : Lp1 (A). Finally, we have |= E1 : Γr

1 (since |= E : Γr implies |= E1 : Γr ).

For all p, p ′ ∈Q+
0 such that E

p

p′ e ⇓ v , by the rule E:MATCH-L we have E1
p −K matchL

p′ e2 ⇓ v .

By the induction hypothesis for e2, it holds that q +p1 −K matchL +ΦE1 (Γr
1)− (q ′+Φ(v : A1)) ≤

p −K matchL −p ′.
Because ΦE (Γr , x : Lp (A)) =ΦE (Γr )+n.p1 +Σn

i=1Φ(vi : A), ΦE1 (Γr
1) =ΦE1 (Γr )+ (n −1).p1 +

Σn
i=1Φ(vi : A) and ΦE1 (Γr ) =ΦE (Γr ), thus we have ΦE1 (Γr

1) =ΦE (Γr , x : Lp1 (A))−p1. Therefore,
q+ΦE (Γr , x : Lp1 (A))−(q ′+Φ(v : A1)) ≤ p−p ′. If E (x) = nil then it is similar to the case A:MATCH-
P.

A:LET Assume that e is an expression of the form let(x,e1, x.e2). Hence, the evaluation deriva-
tion ends with an application of the rule E:LET. Let E1 = E [x 7→ v1] and Γr = Γr

1,Γr
2. The

typing derivation ends with an application of the rule A:LET, thus Σr ;Γr
1

q −K let

q ′
1

e1 : A1 and

Σr ;Γr
2, x : A1

q ′
1

q ′ e2 : A2.

For all p, p ′ ∈ Q+
0 such that E

p

p′ e ⇓ v , by the rule E:LET we have E
p −K let

p′
1

e1 ⇓ v1 and

E1
p′

1
p′ e2 ⇓ v . Since |= E : Γr , we have |= E : Γr

1. By the induction hypothesis for e1, it holds that

q −K let +ΦE (Γr
1)− (q ′

1 +Φ(v1 : A1)) ≤ p −K let −p ′
1.

We have |= E : Γr
2, thus |= E1 : Γr

2, x : A1. Again by the induction hypothesis for e2, we derive
that q ′

1 +ΦE1 (Γr
2, x : A1)− (q ′+Φ(v : A2)) ≤ p ′

1 −p ′.
Sum two in-equations above, it follows q +ΦE (Γr

1)−Φ(v1 : A1)+ΦE1 (Γr
2, x : A1)− (q ′+Φ(v :

A2)) = q +ΦE (Γr
1,Γr

2)− (q ′+Φ(v : A2)) ≤ p −p ′.

L:SUBTYPE Assume that the typing derivation ends with an application of the rule L:SUBTYPE,
thus Σr ;Γr q

q ′ e : A and A <: B .

By the induction hypothesis for e in the premise, for all p, p ′ ∈Q+
0 such that E

p

p′ e ⇓ v it
holds that q +ΦE (Γr )− (q ′+Φ(v : A)) ≤ p −p ′.

Because Φ(E(x) : A) ≤Φ(E(x) : B) we have q +ΦE (Γr )− (q ′+Φ(v : B)) ≤ p −p ′.

L:SUPERTYPE Assume that the typing derivation ends with an application of the rule L:SUPERTYPE,
thus Σr ;Γr , x : B

q

q ′ e : C and A <: B . Since |= E : Γr , x : A and following the property of the sub-
typing relation we have |= E : Γr , x : B .

By the induction hypothesis for e in the premise, for all p, p ′ ∈Q+
0 such that E

p

p′ e ⇓ v it
holds that q +ΦE (Γr , x : B)− (q ′+Φ(v : C )) ≤ p −p ′.

Because Φ(E(x) : A) ≤Φ(E(x) : B) we have q +ΦE (Γr , x : A)− (q ′+Φ(v : C )) ≤ p −p ′.

We can see that the relax rules are consistent among these type systems in sense of satisfying
the following.

(q ≥ p ∧q −p ≤ q ′−p ′)∧ (q ≥ p ∧q −p ≥ q ′−p ′) ⇔ (q ≥ p ∧q −p = q ′−p ′)

That means the constraints for upper bounds and lower bounds imply the constraints for
constant resource and vice versa.
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3.6 Mechanization

We mechanized the soundness proofs for both the two new type systems as well as the classic
AARA type system using the proof assistant Agda. The development is roughly 4000 lines of code,
which includes the rules of the three types systems, the operational cost semantics, a proof of
type preservation for each type system, and the soundness theorems for each type system.

One notable difference is our implementation of the typing contexts. In Agda our contexts
are implemented as lists of pairs of variables and their types. Moreover, in our typing rules
whenever a variable is added to the context we require a proof that the variable is fresh with
respect to the existing context. This requirement is important as it allows us to preserve the
invariant that the context is well formed with respect to the environment as we induct over
typing and evaluation judgements in our soundness proofs. Furthermore, as our typing contexts
are ordered lists we added an exchange rule to our typing rules.

Another important detail is in the implementation of potential. Potential Φ(v : A) for a value
only is defined for well formed inputs. Inputs such as Φ(nil : bool) are not defined. Agda is total
language and as such prohibits users from implementing partial functions. Thus we require
in our Agda implementation that when calculating the potential of a value of a given type the
user provide a derivation that the value is well formed with respect to that type. Similarly when
calculating the potential of a context, ΦE (Γr ), with respect to an environment we require that
the user provide a derivation that the context is well formed with respect to that environment.

Lastly, whereas the type systems and proofs presented here used positive rational numbers,
in the Agda implementation we use natural numbers. This deviation was simply due to the
lacking support for rationals in the Agda standard library. By replacing a number of trivial
lemmas, mostly related to associativity and commutativity, the proofs and embeddings could be
transformed to use rational numbers instead.

A large bulk of the work for the soundness proofs was algebraic manipulation of simply
equalities and inequalities. While Agda has some nice support for equality reasoning and for
automatically generating proofs for simple goals, these tools fall short and made certain parts of
the verification process tedious. Agda, unlike Coq does not have a separate tacit language and a
result a number of these proofs which are obvious algebraic manipulations to humans are long
and tedious in Agda.

4 A resource-aware security type system

In this section we introduce a new type system that enforces resource-aware noninterference
to prevent the leakage of information in high-security variables through low-security channels.
In addition to preventing leakage over the usual input/output information flow channels, our
system incorporates the constant-resource type system discussed in Section 3 to ensure that
leakage does not occur over resource side channels.

The notion of security addressed by our type system considers an attacker who wishes to
learn information about certain inputs containing sensitive data by making observations of the
program’s public outputs and resource usage. We assume an attacker who is able to control the
value of any variable she is capable of observing, and thus influence the program’s behavior and
resource consumption. However, in our model the attacker can only observe the program’s total
resource usage upon termination, and so cannot distinguish between intermediate states or
between terminating and non-terminating executions.
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4.1 Security types

To distinguish parts of the program under the attacker’s control from those that remain secret,
we annotate types with labels ranging over a lattice (L,v,t,⊥). The elements of L correspond
to security levels partially-ordered by v with a unique bottom element ⊥. The corresponding
basic security types take the form:

k ∈L S ::= (unit,k) | (bool,k) | (int,k) | (L(S),k) | S ∗S

A security context Γs is a partial mapping from variable identifiers and the program counter
pc to security types. The context assigns a type (unit,k) to pc to track information that may
propagate through control flow as a result of branching statements. The security type for lists
contains a label L(S) for the elements, as well as a label k for the list’s length.

As in other information flow type systems, the partial order k v k ′ indicates that the class k ′
is at least as restrictive as k, i.e., k is allowed to flow to k ′. We assume a non-trivial security lattice
that contains at least two labels: ` (low security) and h (high security), with `v h. Following
the convention defined in FlowCaml [Sim03], we also make use of a guard relation k /S which
denotes that all of the labels appearing in S are at least as restrictive as k. This is given in Figure 10
along with its dual notion S Î k, called the collecting relation, and the standard subtyping relation
S1 ≤ S2.

To refer to sets of variables by security class, we write [Γs ]Îk to denote the set of variable
identifiers x in the domain of Γs such that Γs (x) Î k, and define k/[Γs ] similarly. These gives
us the set of variables upper- and lower-bounded by k, respectively. Conversely, we define
[Γs ] 6Îk = {x ∈ dom(Γs ) : Γs (x) 6Î k}, the set of variables more restrictive than k. To refer to the set
of variables strictly bounded below by k1 and above by k2, we write k1/[Γs ]Îk2 . Given two well-
formed environments E1 and E2, we say that they are k-equivalent with respect to Γs , written
E1 ≡k E2, if they agree on all variables with label at most k:

E1 ≡k E2 ⇔∀x ∈ [Γs ]Îk .E1(x) = E2(x)

This relation captures the attacker’s observational equivalence between the two environments.

k v k ′ T ∈ Atoms

k / (T,k ′)
k v k ′ k /S

k / (L(S),k ′)
k /S1 k /S2

k /S1 ∗S2

k ′ v k T ∈ Atoms

(T,k ′) Î k

k ′ v k S Î k

(L(S),k ′) Î k

S1 Î k S2 Î k

S1 ∗S2 Î k

k v k ′ T∈Atoms

(T,k) ≤ (T,k ′)
k v k ′ S ≤ S′

(L(S),k)≤(L(S′),k ′)
S1 ≤ S′

1 S2 ≤ S′
2

S1 ∗S2 ≤ S′
1 ∗S′

2

Figure 10: Guards, collecting security labels, and subtyping (Atoms = {unit, int,bool})

The first-order security types take the form:

pc ∈L F s ::= S1
pc/const−−−−−−→ S2 | S1

pc−→ S2
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(SR:UNIT )

pc;Σs ;Γs const () : (unit,pc)

(SR:BOOL)
b ∈ {true , false }

pc;Σs ;Γs const b : (bool,pc)

(SR:INT )
n ∈Z

pc;Σs ;Γs const n : (int,pc)

(SR:VAR)
x : S ∈ Γs pc/S

pc;Σs ;Γs const x : S

(SR:B-OP)
x1 : (bool,kx1 ) ∈ Γs x2 : (bool,kx2 ) ∈ Γs pc v kx1 tkx2 ¦ ∈ {and , or }

pc;Σs ;Γs const op¦(x1, x2) : (bool,kx1 tkx2 )

(SR:C-GEN)
pc;Σs ;Γs ` e : S const(e)

pc;Σs ;Γs const e : S

(SR:GEN)
pc;Σs ;Γs const e : S

pc;Σs ;Γs ` e : S

(SR:IB-OP)
x1 : (int,kx1 ) ∈ Γs x2 : (int,kx2 ) ∈ Γs pc v kx1 tkx2 ¦ ∈ {=,<>,>,<,<=,>=}

pc;Σs ;Γs const op¦(x1, x2) : (bool,kx1 tkx2 )

(SR:PAIR)
x1 : S1 ∈ Γs x2 : S2 ∈ Γs pc/S1 ∗S2

pc;Σs ;Γs const pair(x1, x2) : S1 ∗S2

(SR:I-OP)
x1 : (int,kx1 ) ∈ Γs x2 : (int,kx2 ) ∈ Γs pc v kx1 tkx2 ¦ ∈ {+,−,∗, div , mod }

pc;Σs ;Γs const op¦(x1, x2) : (int,kx1 tkx2 )

(SR:CONS)
xh : S ∈ Γs xt : (L(S),kx ) ∈ Γs pc/ (L(S),kx )

pc;Σs ;Γs const cons(xh , xt ) : (L(S),kx )

(SR:FUN)

x : S1 ∈ Γs Σs ( f ) = S1
pc′−−→ S2 pc v pc′

pc;Σs ;Γs ` app( f , x) : S2

(SR:L-ARG)

x : S1 ∈ Γs Σs ( f ) = S1
pc′−−→ S2 pc v pc′ S1 Î k1

pc;Σs ;Γs const app( f , x) : S2

(SR:SUBTYPING)
pc;Σs ;Γs ` e : S S ≤ S′

pc;Σs ;Γs ` e : S′

Figure 11: Typing rules: security (1 of 2)

The annotation pc indicates the security level of the program counter, i.e., a lower-bound on the
label of any observer who is allowed to learn that a given function has been invoked. The const
annotation denotes that the function body respects resource-aware noninterference defined in
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(SR:C-FUN)

x : S1 ∈ Γs Σs ( f ) = S1
pc′/const−−−−−−→ S2 pc v pc′

pc;Σs ;Γs const app( f , x) : S2

(SR:NIL)
S ∈S pc/S

pc;Σs ;Γs const nil : (L(S),pc)

(SR:C-SUBTYPING)
pc;Σs ;Γs const e : S S ≤ S′

pc;Σs ;Γs const e : S′

(SR:LET )
pc;Σs ;Γs ` e1 : S1 pc;Σs ;Γs , x : S1 ` e2 : S2

pc;Σs ;Γs ` let(x,e1, x.e2) : S2

(SR:L-LET )
pc;Σs ;Γs const e1 : S1 pc;Σs ;Γs , x : S1

const e2 : S2 S1 Î k1

pc;Σs ;Γs const let(x,e1, x.e2) : S2

(SR:IF)
x : (bool,kx ) ∈ Γs pctkx ;Σs ;Γs ` et : S pctkx ;Σs ;Γs ` e f : S pctkx /S

pc;Σs ;Γs ` if(x,et ,e f ) : S

(SR:L-IF)
x : (bool,kx ) ∈ Γs

pctkx ;Σs ;Γs const et : S pctkx ;Σs ;Γs const e f : S pctkx /S kx v k1

pc;Σs ;Γs const if(x,et ,e f ) : S

(SR:MATCH-P)
x : S1 ∗S2 ∈ Γs pc;Σs ;Γs , x1 : S1, x2 : S2 ` e : S

pc;Σs ;Γs ` match(x, (x1, x2).e) : S

(SR:C-MATCH-P)
x : S1 ∗S2 ∈ Γs pc;Σs ;Γs , x1 : S1, x2 : S2

const e : S

pc;Σs ;Γs const match(x, (x1, x2).e) : S

(SR:MATCH-L)
x : (L(S),kx ) ∈ Γs

pctkx ;Σs ;Γs ` e1 : S1 pctkx ;Σs ;Γs , xh : S, xt : (L(S),kx ) ` e2 : S1 pctkx /S1

pc;Σs ;Γs ` match(x,e1, (xh , xt ).e2) : S1

(SR:C-MATCH-L)
x : (L(S),kx ) ∈ Γs

pctkx ;Σs ;Γs const e1 : S1 pctkx ;Σs ;Γs , xh : S, xt : (L(S),kx ) const e2 : S1 pctkx /S1

pc;Σs ;Γs const match(x,e1, (xh , xt ).e2) : S1

Figure 12: Typing rules: security (2 of 2)

the following section. A security signature Σs : FID →℘(F s ) \ {;} is a finite partial mapping from
a set of function identifiers to a non-empty sets of first-order security types.
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4.2 Resource-aware noninterference

We consider an adversary associated with label k1 ∈L, who can observe and control variables in
[Γs ]Îk1 . Intuitively, we say that a program P satisfies resource-aware noninterference at level
(k1,k2) with respect to Γs , where k1 v k2, if 1) the behavior of P does not leak any information
about the contents of variables more sensitive than k1, and 2) does not leak any information
about the contents or sizes of variables more sensitive than k2. The definition follows.

Definition 2. Let E1 and E2 be two well-formed environments and Γs be a security context sharing
their domain. An expression e satisfies resource-aware noninterference at level (k1,k2) for k1 v k2,
if whenever E1 and E2 are:

1. observationally-equivalent at k1: E1 ≡k1 E2,

2. size-equivalent with respect to k1/[Γs ]Îk2 : E1 ≈k1/[Γs ]Îk2
E2

then the following holds:

E1
p1

p′
1

e ⇓ v1,E2
p2

p′
2

e ⇓ v2 =⇒ v1 = v2 ∧p1 −p ′
1 = p2 −p ′

2

The final condition in Defintion 2 ensures two properties. First, requiring that v1 = v2 pro-
vides noninterference [GM82], given that E1 and E2 are observationally-equivalent. Second, the
requirement p1 −p ′

1 = p2 −p ′
2 ensures that the program’s resource consumption will remain

constant with respect to changes in variables from the set [Γs ] 6Îk1 . This establishes noninterfer-
ence with respect to the program’s final resource consumption, and thus prevents the leakage of
secret information through resource side-channels.

Before moving on, we point out an important subtlety in this definition. We require that
all variables in k1/[Γs ]Îk2 begin with equivalent sizes in E1 and E2, but not those in k2/[Γs ]. By
fixing this quantity in the initial environments, we assume that an attacker is able to control and
observe it, so it is not protected by the definition. This effectively establishes three classes of
variables, i.e., those whose size and content are observable to the k1-adversary, those whose
size (but not content) is observable, and those whose size and content remain secret. In the
remainder of the text, we will simplify the technical development by assuming that the third and
most-restrictive class is empty, and that all of the secret variables reside in k1/[Γs ]Îk2 .

Assumptions and limitations. The definition of resource-aware noninterference given in Def-
inition 2 assumes an adversary whose observations of resource consumption match the cost
semantics given in Section 3. Depending on how the costs are parameterized, this may not
match the reality of actual resource use in a physical environment on modern hardware. For
example, if the processor’s instruction cache is not accounted for then this may introduce an
exploitable discrepancy between the guarantees provided by the type system and the real-world
attacker’s observations [BB05, GBK11, OST06]. In this work, we use a cost semantics that is
conceptually straightforward, and leave as future work the development of more precise models
(such as the one described in by Zhang et al. [ZAM12]) that are faithful to the subtleties of
hardware platforms.

4.3 Proving resource-aware noninterference

There are two extreme ways of proving resource-aware noninterference. Assume we already
have established classic noninterference by using an information-flow type system. The first
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way is to additionally prove constant resource usage globally by forgetting the security labels
and showing that the program has constant resource usage. This is a sound approach but it
requires us to reason about parts of the programs that are not affected by secret data. It would
therefore result the rejection of programs that have the resource-aware noninterference property
but are not constant resource. The second way is to prove constant resource usage locally by
ensuring that every conditional that branches on secret values is constant time. However, this
local approach is problematic because it is not compositional. Consider the following examples
in which rev is the standard reverse function.

let f1(b,x) =
let z = if b then x else [] in rev z

let f2(b,x,y) =
let z = if b then let _ = rev y in x

else let _ = rev x in y
in rev z

If we assume a cost model in which we count the number of function calls then the cost of rev(x)
is |x|. So rev is constant resource w.r.t its argument. Moreover, the expression if b then x else []
is constant resource. However, f1 is not constant resource. In contrast, the conditional in the
function f2 is not constant resource. However, f2 is a constant resource function. The function
f2 can be automatically analyzed with the constant-resource type system from Section 3 while f1
is correctly rejected.

The idea of our type system for resource-aware noninterference is to allow both global
and local reasoning about resource consumption as well as arbitrary intermediate levels. We
ensure that every expression that is typed in a high security context is part of a constant resource
expression. In this way, we get the benefits of local reasoning without loosing compositionality.

4.4 Typing rules and soundness

We combine our type system for constant resource usage with a standard information flow
type system which based on FlowCaml [PS02]. The interface between the two type systems is
relatively light and the idea is applicable to other methods for proving constant resource use as
well as other security type systems.

In the type judgement, an expression is typed under a type context Γs and a label pc. The
pc label can be considered an upper bound on the security labels of all values that affect the
control flow of the expression and a lower bound on the labels of the function’s effects [PS02]. As
mentioned earlier, we will simplify the technical development by assuming that the third and
most-restrictive class is empty, and that all of the secret variables reside in k1/[Γs ]Îk2 , that is,
the typing rules here guarantee that well-typed expressions provably satisfy the resource-aware
noninterference property w.r.t. changes in variables from the set [Γs ] 6Îk1 .

We define two type judgements of the following form, in which we write const(e) if there
exists Γr and Σr such that Σr ;Γr q

q ′ e : A, .(A | A, A), and ∀x ∈ [Γs ] 6Îk1 . .(Γr (x) | Γr (x),Γr (x)).

pc;Σs ;Γs const e : S and pc;Σs ;Γs e : S .

The judgement with the const annotation states that under a security configuration given by
Γs and the label pc, e has type S and it satisfies resource-ware noninterference w.r.t. changes
in variables from the set [Γs ] 6Îk1 . The second judgement indicates that e satisfies the noninter-
ference property but does not make any guarantees about resource-based side channels. The
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typing rules are given in Fig. 11 and Fig. 12. We implicitly assume that the security types and the
resource-annotated counterparts have the same base types.

Note that the standard information flow typing rules [HR98, PS02] can be obtained by
removing the const annotation from all judgements. Consider for instance the rule SR:IF for
conditional expressions. By executing the true or false branches, an adversary could gain
information about the conditional value whose security label is kx . Therefore the conditional
expression must be type-checked under a security assumption at least as restrictive as pc and
kx . This is a standard requirement in any information flow type system. In the following we will
focus on explaining how the rules restrict the observable resource usage instead of these classic
noninterference aspects.

The most interesting rules are SR:C-GEN and the rules for and let expressions and condition-
als, which block leakage over resource usage when branching on high security data. SR:C-GEN

allows us to globally reason about constant resource usage for an arbitrary subexpression that
has the noninterference property. For example, we can apply SR:IF, the standard rule for condi-
tionals, first and then SR:C-GEN to prove that the expression is constant resource. Alternatively,
we can use rules such as SR:L-IF and SR:L-LET to locally reason about resource use.

The rule SR:L-LET reflects the fact that if both e1 and e2 have the resource-aware noninter-
ference property and the size of x only depends on low security data then let(x,e1, x.e2) has the
resource-aware noninterference property. The reasoning is similar for rule SR:L-IF where we
require that the variable x does not depend on high security data.

Leaf expressions such as op¦(x1, x2) and cons(xh , xt ) have constant resource usage. Thus
their judgments are always associated with the qualifier const as shown in the rule SR:B-OP.
The rule SR:C-FUN states that if a function’s body has the resource-aware noninterference
property then the function application has the resource-aware noninterference property too. If
the argument’s label is low security data, bounded below by k1, then the function application
has the resource-aware noninterference property since the value of the argument is always the
same under any k-equivalent environments. It is reflected by rule SR:L-ARG.

Example Recall functions compare and p_compare in Fig. 5. Suppose the content of the
first list is secret and the length is public. Thus it has type (L(int,h),`). While the second list
controlled by adversaries is public, hence it has type (L(int,`),`). Assume that the pc label is `
and [Γs ] 6Îk1 = [Γs ] 6Î`. The return value’s label depends on the content of the first list elements
whose label is h. Thus it must be assigned the label h to make the functions well-typed.

compare : ((L(int,h),`), (L(int,`),`))
`−→ (bool,h)

p_compare : ((L(int,h),`), (L(int,`),`))
`/const−−−−−→ (bool,h)

Here, both functions satisfy the noninterference property at security label `. However, only
p_compare is resource-aware noninterference function w.r.t [Γs ] 6Î`, or the secret list.

Consider the following function cond_rev in which rev is the standard reverse function.

let cond_rev(l1,l2,b1,b2) =
if b1 then let r =

if b2 then rev l1; l2 else rev l2; l1
in rev r; ()

else ()

Assume that l1, l2, b1 and b2 have types (L(int,h),`), (L(int,h),`), (bool,`), and (bool,h), respec-
tively. Given the rev function is constant w.r.t the argument, the inner if is not resource-aware
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noninterference. However, the let expression is resource-aware noninterference w.r.t [Γs ] 6Î` =
{l1, l2,b2} by applying the rule SR:C-GEN. Finally, the outer if branching on low security data
and its branches of are resource-aware noninterference, has resource-aware noninterference
property w.r.t {l1, l2,b2} at level ` by the rule SR:L-IF. We obtain the following inferred type.

cond_rev : ((L(int,h),`), (L(int,h),`), (bool,`), (bool,h))
`/const−−−−−→ (unit,`)

We now prove the soundness of the type system w.r.t the definition of resource-aware
noninterference. The soundness theorem states that if e is well-typed expression with the
const annotation then it is resource-aware noninterference expression at level k1.

The following two lemmas are needed in the soundness proof. The first lemma states that
the type system satisfies the standard simple security property [VSI96] and the second shows
that the type system prove classic noninterference.

Lemma 5. Let pc;Σs ;Γs ` e : S or pc;Σs ;Γs const e : S. For all variables x in e, if S Î k1 then
Γs (x) Î k1.

Proof. By induction on the structure of the typing derivation.

SR:UNIT There is no variable thus it follows immediately.

SR:BOOL It is similar to the case SR:UNIT.

SR:INT It is similar to the case SR:UNIT.

SR:VAR Since Γs (x) = S, if S Î k1 then Γs (x) Î k1.

SR:B-OP If (bool,kx1 tkx2 ) Î k1 then Γs (x1) = (bool,kx1 ) Î k1 and Γs (x2) = (bool,kx2 ) Î k1.

SR:IB-OP It is similar to the case SR:B-OP.

SR:I-OP It is similar to the case SR:B-OP.

SR:GEN - SR:C-GEN By induction for e in the premise, it follows.

SR:FUN Because e is well-formed program, there exists a well-typed expression e f such that
pc’;Σs ;Γs ` e f : S2. By induction for e f , for all variables x in e, if S Î k1 then Γs (x) Î k1. It is
similar for SR:L-ARG and SR:C-FUN.

S:LET If S2 Î k1 then by induction for e2, S1 Î k1. Thus for all variable x in e, it is a variable in
e1 or e2. By induction for e1 and e2, it follows. It is similar for SR:L-LET.

SR:IF If S Î k1 then by the hypothesis (bool,kx ) Î k1. For all variable y in e, it is a variable in
et or e f . By induction for et and e f , it follows. It is similar for SR:L-IF.

SR:PAIR If S1 ∗S2 Î k1 then Γs (x1) = S1 Î k1 and Γs (x2) = S2 Î k1.
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SR:MATCH-P If S Î k1 then by induction for e, Γs (x1) Î k1 and Γs (x2) Î k1. Thus Γs (x) Î k1.
For all other variables y in e, again by induction for e, if S Î k1 then Γs (y) Î k1. It is similar for
SR:C-MATCH-P.

SR:NIL It is similar to the case SR:UNIT.

SR:CONS If (L(S),kx ) Î k1 then Γs (xh) = S Î k1 and Γs (xt ) = (L(S),kx ) Î k1.

SR:MATCH-L If S1 Î k1 then by induction for e2, Γs (xh) = S Î k1 and Γs (xt ) = (L(S),kx ) Î k1.
Thus Γs (x) Î k1. For all other variables y in e, y is a variable in e1 or e2. Again by induction for e1

and e2, if S1 Î k1 then Γs (y) Î k1.

SR:SUBTYPING By the subtyping relation, if S′ Î k1 then S Î k1. Thus by induction for e in the
premise, for all variables x in e, if S Î k1 then Γs (x) Î k1. It is similar for SR:C-SUBTYPING.

Lemma 6. Let pc;Σs ;Γs ` e : S or pc;Σs ;Γs const e : S, E1 ` e ⇓ v1, E2 ` e ⇓ v2, and E1 ≡k1 E2.
Then v1 = v2 if S Î k1.

Proof. The proof is done by induction on the structure of the evaluation derivation and the
typing derivation.

SR:UNIT Suppose the evaluation derivation of e ends with an application of the rule E:UNIT,
thus E1 ` e ⇓ () and E2 ` e ⇓ (). Hence, it follows.

SR:BOOL It is similar to the case SR:UNIT.

SR:INT It is similar to the case SR:UNIT.

SR:VAR Suppose the evaluation derivation ends with an application of the rule E:VAR, thus
E1(x) = v1 and E2(x) = v2. The typing derivation ends with an application of the rule SR:VAR,
thus Γs (x) = S. If S Î k1, by the hypothesis E1(x) = E2(x) since x ∈ dom(Ei ), i = {1,2}.

SR:B-OP Suppose the evaluation derivation ends with an application of the rule E:BIN, thus
E1(x1)¦E1(x2) = v1 and E2(x1)¦E2(x2) = v2. The typing derivation ends with an application of
the rules SR:B-OP or SR:GEN. We have kx1 /S and kx2 /S. If S Î k1 then kx1 v k1 and kx2 v k1.
By the hypothesis, we have E1(x1) = E2(x1) and E1(x2) = E2(x2), thus v1 = v2.

SR:IB-OP It is similar to the case SR:B-OP.

SR:I-OP It is similar to the case SR:B-OP.

SR:GEN-SR:C-GEN By induction for e in the premise, it follows that if S Î k1 then v1 = v2.
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SR:FUN Suppose the evaluation derivation ends with an application of the rule E:FUN, thus
Σ(g ) = T1 → T2 and [y g 7→ Ei (x)] ` eg ⇓ vi for i = {1,2}. The typing derivation ends with an
application of the following rules.

• Case SR:FUN. Because e is well-formed program, there exists a well-typed expression e f

such that pc’;Σs ;Γs ` e f : S2 and e f̂ = eg . By induction for e f , if S2 Î k1 then v1 = v2.

• Case SR:L-ARG. It is similar to the case SR:FUN.

• Case SR:C-FUN. It is similar to the case SR:FUN.

• Case SR:GEN and SR:C-GEN. It follows.

S:LET Suppose the evaluation derivation ends with an application of the rule E:LET, thus
Ei ` e1 ⇓ v i

1 and Ei [x 7→ v i
1] ` e2 ⇓ vi for i = {1,2}. The typing derivation ends with an application

of the following rules.

• Case SR:L-LET. If S2 Î k1, by the simple security lemma, it holds that S1 Î k1. By induction
for e1, we have v1

1 = v2
1 , so E1[x 7→ v1

1] ≡k E2[x 7→ v2
1]. Again by induction for e2, we have

v1 = v2.

• Case SR:LET. It is similar to the case SR:L-LET.

• Case SR:GEN and SR:C-GEN. It follows.

SR:IF Suppose e is of the form if(x,et ,e f ), the evaluation derivation ends with an application
of the rule E:IF-TRUE or the rule E:IF-FALSE. The typing derivation ends with an application of
the following rules.

• Case SR:L-IF. By the hypothesis we have kx v k1, thus E1(x) = E2(x). Assume that
E1(x) = true , then E1 ` et ⇓ v1 and E2 ` et ⇓ v2. By induction for et we have v1 = v2 if
S Î k1. It is similar for E1(x) = false .

• Case SR:IF. If kx v k1 the proof is similar to the case SR:L-IF. Otherwise, kx 6v k1, thus by
the simple security lemma we have S 6Î k1.

• Case SR:GEN and SR:C-GEN. It follows.

SR:PAIR Suppose the evaluation derivation ends with an application of the rule E:PAIR, thus
(Ei (x1),Ei (x2)) = vi for i = {1,2}. The typing derivation ends with an application of the rules
SR:PAIR or SR:GEN.

If S1 ∗ S2 Î k, then by the simple security lemma we have S1 Î k1 and S2 Î k1. Hence it
follows v1 = v2.

SR:MATCH-P Suppose the evaluation derivation ends with an application of the rule E:MATCH-
P, thus Ei (x) = (v i

1, v i
2) and Ei [x1 7→ v i

1, x2 7→ v i
2] ` e ⇓ vi for i = {1,2}. The typing derivation ends

with an application of the following rules.

• Case SR:MATCH-P. If S Î k1, then by the simple security lemma we have S1 ∗S2 Î k1. By
the hypothesis, E1(x) = E2(x), thus v1

1 = v2
1 and v1

2 = v2
2 . Hence, E1[x1 7→ v1

1 , x2 7→ v1
2] ≡k

E2[x1 7→ v2
1 , x2 7→ v2

2], by induction for e in the premise, it holds that v1 = v2.
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• Case SR:C-MATCH-P. It is similar to the case SR:MATCH-P.

• Case SR:GEN and SR:C-GEN. It follows.

SR:NIL It is similar to the case SR:UNIT.

SR:CONS Suppose the evaluation derivation ends with an application of the rule E:CONS, thus
Ei (xh) = v i

1 and Ei (xt ) = [v i
2, · · · , v i

n] for i = {1,2}. The typing derivation ends with an application
of the rules SR:CONS or SR:GEN. If (L(S),kx ) Î k1 then by the hypothesis we have v1

1 = v2
1 and

[v1
2 , · · · , v1

n] = [v2
2 , · · · , v2

n]. Thus E1(cons (xh , xt )) = E2(cons (xh , xt )).

SR:MATCH-L Suppose e is of the form match(x,e1, (xh , xt ).e2), the evaluation derivation ends
with an application of the rule E:MATCH-N or the rule E:MATCH-L. The typing derivation ends
with an application of the following rules.

• Case SR:MATCH-L. If S1 Î k1, then by the simple security lemma we have (L(S),kx ) Î k1.
By the hypothesis we have E1(x) = E2(x). Assume that E1(x) = E2(x) = [v1, · · · , vn], by
the rule E:MATCH-L we have Ei [xh 7→ v1, xt 7→ [v2, ..., vn]] ` e2 ⇓ vi for i = {1,2}. Since
E1[xh 7→ v1, xt 7→ [v2, ..., vn]] ≡k E2[xh 7→ v1, xt 7→ [v2, ..., vn]], by induction for e2, it holds
that v1 = v2 if S1 Î k1. It is similar for E1(x) = E2(x) = nil .

• Case SR:C-MATCH-L.It is similar to the case SR:MATCH-L.

• Case SR:GEN and SR:C-GEN. It follows.

SR:SUBTYPING Suppose the typing derivation ends with the rule SR:SUBTYPING. If S′ Î k1

then S Î k1. Thus by induction for e in the premise it follows. It is similar for SR:C-SUBTYPING.

Theorem 6. If |= E : Γs , E ` e ⇓ v, and pc;Σs ;Γs const e : S then e is resource-aware noninterfer-
ence expression at level k1.

Proof. The proof is done by induction on the structure of the typing derivation and the eval-
uation derivation. Let X be the set of variables [Γs ] 6Îk1 . For all environments E1, E2 such that

E1 ≈X E2 and E1 ≡k1 E2, if E1
p1

p′
1

e ⇓ v1 and E2
p2

p′
2

e ⇓ v2. We then show that p1 −p ′
1 = p2 −p ′

2

and v1 = v2 if S Î k1. By Lemma 6, e satisfies the noninterference property at security label k1.
Thus we need to prove that p1 −p ′

1 = p2 −p ′
2.

SR:UNIT Suppose the evaluation derivation of e ends with an application of the rule E:UNIT,
thus p1 −p ′

1 = p2 −p ′
2 = K unit .

SR:BOOL It is similar to the case SR:UNIT.

SR:INT It is similar to the case SR:UNIT.

SR:VAR It is similar to the case SR:UNIT.
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SR:B-OP Suppose the evaluation derivation ends with an application of the rule E:BIN, thus

E1
p′

1 +K op

p′
1

e ⇓ v1 and E1
p′

2 +K op

p′
2

e ⇓ v1. We have p1 −p ′
1 = p2 −p ′

2 = K op .

SR:IB-OP It is similar to the case SR:B-OP.

SR:I-OP It is similar to the case SR:B-OP.

SR:C-GEN By the hypothesis we have const(e), thus it holds that Σr ;Γr q

q ′ e : A and . (A |
A, A). By the constant-resource theorem, for all p1, p ′

1, p2, p ′
2 ∈Q+

0 such that E1
p1

p′
1

e ⇓ v1 and

E2
p2

p′
2

e ⇓ v2, we have p1−p ′
1 = q+ΦE1 (Γr )−(q ′+Φ(v1 : A)) and p2−p ′

2 = q+ΦE2 (Γr )−(q ′+Φ(v2 :
A)).

Since E1 ≈X E2,ΦE1 (X ) =ΦE2 (X ). For all y 6∈ X , E1(y) = E2(y) since E1 ≡k1 E2, thusΦ(E1(y)) =
Φ(E2(y)). Hence, ΦE1 (Γr ) =ΦE2 (Γr ), it follows p1 −p ′

1 = p2 −p ′
2.

SR:FUN Suppose e is of the form app( f , x), thus the typing derivation ends with an application
of either the rule SR:L-ARG, SR:C-FUN, or SR:C-GEN.

• Case SR:L-ARG. By the hypothesis we have E1(x) = E2(x), it follows p1 −p ′
1 = p2 −p ′

2.

• Case SR:C-FUN. Because e is well-formed, there exists a well-typed expression e f such
that pc’;Σs ;Γs const e f : S2. By induction for e f which is resource-aware noninterference
w.r.t X , p1 −K app −p ′

1 = p2 −K app −p ′
2, it follows.

• Case SR:C-GEN. By the case SR:C-GEN it follows.

SR:LET Suppose e is of the form let(x,e1, x.e2), thus the typing derivation ends with an appli-
cation of either the rule SR:L-LET or SR:C-GEN.

• Case SR:L-LET. Suppose the evaluations E1
p1 −K let

p′ e1 ⇓ v1
1 , E2

p2 −K let

p" e1 ⇓ v2
1 , E1[x 7→

v1
1]

p′
p′

1
e2 ⇓ v1, and E2[x 7→ v2

1]
p"

p′
2

e2 ⇓ v2. By induction for e1 that is resource-aware

noninterference w.r.t X , p1 −K let −p ′ = p2 −K let −p". By the hypothesis v1
1 = v2

1 . Thus
E1[x 7→ v1

1] ≈X E2[x 7→ v2
1] and E1[x 7→ v1

1] ≡k1 E2[x 7→ v2
1], by induction for e2 that is

resource-aware noninterference w.r.t X , we have p ′−p ′
1 = p"−p ′

2. Hence, p1−p ′
1 = p2−p ′

2.

• Case SR:C-GEN. By the case SR:C-GEN it follows.

SR:IF Suppose e is of the form if(x,et ,e f ), thus the typing derivation ends with an application
of either the rule SR:L-IF or SR:C-GEN.

• Case SR:L-IF. By the hypothesis we have E1(x) = E2(x). Assume that E1(x) = E2(x) =
true , by the evaluation rule E:IF-TRUE, E1

p1 −K cond

p′
1

et ⇓ v1 and E2
p2 −K cond

p′
2

et ⇓ v2. By

induction for et that is resource-aware noninterference w.r.t X , we have p1 −p ′
1 = p2 −p ′

2.
It is similar for E1(x) = E2(x) = false .

• Case SR:C-GEN. Since E1 ≈X E2 w.r.t Γs , we have E1 ≈X E2 w.r.t Γr . By the hypothesis we
have const(e). Thus by the soundness theorem of constant resource type system, it follows
p1 −p ′

1 = p2 −p ′
2.
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SR:PAIR It is similar to the case SR:B-OP.

SR:MATCH-P Suppose e is of the form match(x, (x1, x2).e), thus the typing derivation ends
with an application of either the rule SR:C-MATCH-P or SR:C-GEN.

• Case SR:C-MATCH-P. Let E ′
1 = E1[x1 7→ v1

1 , x2 7→ v1
2] and E ′

2 = E2[x1 7→ v2
1 , x2 7→ v2

2]. If
x ∈ X then |E1(x)| ≈ |E2(x)|. Thus |E ′

1(x1)| ≈ |E ′
2(x1)| and |E ′

1(x2)| ≈ |E ′
2(x2)|. Hence,

E ′
1 ≈X∪{x1,x2} E ′

2, by induction for e in the premise which is resource-aware noninter-

ference w.r.t X ∪ {x1, x2}, p1 −K matchP −p ′
1 = p2 −K matchP −p ′

2, it follows. If x 6∈ X then
E1(x) = E2(x), it is similar.

• Case SR:C-GEN. By the case SR:C-GEN it follows.

SR:NIL It is similar to the case SR:UNIT.

SR:CONS It is similar to the case SR:B-OP.

SR:MATCH-L Suppose e is of the form match(x,e1, (xh , xt ).e2), thus the typing derivation ends
with an application of either the rule SR:C-MATCH-L or SR:C-GEN.

• Case SR:C-MATCH-L. Let E ′
1 = E1[xh 7→ v1

1 , xt 7→ v1
2] and E ′

2 = E2[xh 7→ v2
1 , xt 7→ v2

2]. If x ∈
X then |E1(x)| ≈ |E2(x)|. Suppose E1(x) and E2(x) are different from nil , |E ′

1(xh)| ≈ |E ′
2(xh)|

and |E ′
1(xt )| ≈ |E ′

2(xt )|. Hence, E ′
1 ≈X∪{xt ,xh } E ′

2, by induction for e2 which is resource-

aware noninterference w.r.t X ∪ {xt , xh}, we have p1 −K matchL −p ′
1 = p2 −K matchL −p ′

2,
thus p1−p ′

1 = p2−p ′
2. If E1(x) = E2(x) = nil then by induction for e1 that is resource-aware

noninterference w.r.t X , it follows. If x 6∈ X then E1(x) = E2(x), it is similar.

• Case SR:C-GEN. By the case SR:C-GEN it follows.

SR:SUBTYPING The typing derivation ends with an application of either the rule SR:C-SHARE

or SR:C-GEN.

• Case SR:C-SUBTYPING. By induction for e in the premise, p1 −p ′
1 = p2 −p ′

2.

• Case SR:C-GEN. By the case SR:C-GEN it follows.

5 Quantifying and transforming out leakages

We present techniques to quantify the amount of information leakage through resource usage
and transform leaky programs into constant resource programs. The quantification relies on
the lower and upper bounds inferred by our resource type systems. The transformation pads
the programs with dummy computations so that the evaluations consume the same amount
of resource usage and the outputs are identical with the original programs. In the current
implementation, these dummy computations are added into programs by users and the padding
parameters are automatically added by our analyzer to obtain the optimal values. It would be
straightforward to make the process fully automatic but the interactive flavor of our approach
helps to get a better understanding of the system.
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5.1 Quantification

Recall from Section 4 that we assume an adversary at level k1 who is always able to observe 1)
the values of variables in [Γs ]Îk1 , and 2) the final resource consumption of the program. For
many programs, it may be the case that changes to the secret variables [Γs ] 6Îk1 effect observable
differences in the program’s final resource consumption, but only allow the attacker to learn
partial information about the corresponding secrets. In this section, we show that the upper
and lower-bound information provided by our type systems allow us to derive bounds on the
amount of partial information that is leaked.

To quantify the amount of leaked information, we measure the number of distinct envi-
ronments that the attacker could deduce as having produced a given resource consumption
observation. However, becuase there may be an unbounded number of such environments,
we parameterize this quantity on the size of the values contained in each environment. Let EN

denote the space of environments with values of size characterized by N . Given an environment
E and expression e, define U (E ,e) = pδ such that E

p

p′ e ⇓ v and pδ = p−p ′. Then for an expres-
sion e and resource observation pδ, we define the set RN (e, pδ) which captures the attacker’s
uncertainty about the environment which produced pδ:

RN (e, pδ) = {E ′ ∈ EN : U (E ,e) = pδ}

Notice that when |RN (e, p)| = 1, the attacker can deduce exactly which environment was used,
whereas when this quantity is large little additional information is learned from pδ. This gives
us a natural definition of leakage, which is obtained by aggregating the inverse of the cardinality
of RN over the possible initial environments of e:

CN (e) =
( ∑

E∈EN

1

|RN (e,U (E ,e))|

)
−1

CN (e) corresponds to our intuition about leakage. When e leaks no information through resource
consumption, then each term in the summation will be 1/|Esi zes | giving CN (e) = 0, whereas if e
leaks perfect information about its starting environment then each term will be 1, leading to
CN (e) = |EN |−1.

Theorem 7. Let P e
N be the complete set of resource observations producible by expression e under

environments of size N , i.e.,
P e

N = {p : ∃E ∈ EN .U (E ,e) = p}

Then |P e
N | =CN (e)+1.

Proof. Observe that P e
N partitions EN into sets defined by RN (e, p) for each p ∈ P e

N . This rela-
tionship allows us to swap the index of the summation from the definition of CN (e), obtaining
an equivalent sum over P e

N :

CN (e)+1 = ∑
E∈EN

1

|RN (e,U (E ,e))| =
∑

{p:∃E∈EN .U (E ,e)=p}

1

= |P e
N |

Lemma 7. Let le (N ) and ue (N ) be lower and upper-bounds on the resource consumption of e for
inputs of size N . If U (E ,e) ∈Z for all environments E, then CN (e) ≤ ue (N )− le (N ).
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Lemma 8. Assume that environments are sampled uniform-randomly from EN . Then the Shan-
non entropy of P e

N is given by CN (e): H(P e
N ) ≤ log2(CN (e)+1)

Lemma 7 leverages Theorem 7 to derive an upper-bound on leakage from upper and lower-
bounds on resource usage. This result only holds when the possible resource observations of e
are integral, as this ensures that the interval [le (N ),ue (N )] ⊇ P e

N is finite. Lemma 8 relates CN (e)
to Shannon entropy, which is commonly used to characterize information leakage [ZAM12,
KMO12, KB07].

5.2 Transformation

To transform programs into constant resource programs we extend the type system for constant
resource use from Section 3. Recall that the type system treats potential in a linear fashion to
ensure that potential is not wasted. We will now add sinks for potential which will be able to
absorb excess potential. At runtime the the sinks will consume the exact amount of resources
that have been statically-absorbed to ensure that potential is still treated in a linear way. The
advantage of this approach is that the worst-case resource consumption is often not affected by
the transformation. Additionally, we do not need to keep track of resource usage at runtime to
pad the resource usage at the sinks, because the amount of resource that must be discarded is
statically-determined by the type system. Finally, we automatically obtain a type derivation that
serves as a proof that the transformation is constant-resource.

More precisely, the sinks are represented by the syntactic form: consume(A,p)(x). Here, A is a
resource-annotated type and p ∈Q≥0 is a non-negative rational number. The idea is that A and
p define the resource consumption of the expression. In the implementation, the user only has
to write consume(x), and the annotations are added via automatic syntax elaboration during
the resource type inference.

Let E be a well-formed environment w.r.t Γr . For every x ∈ dom(Γ) with Γr (x) = A, the
expression consume(A,p)(x) consumes Φ(E(x) : A)+p resource units and evaluate to () . The
evaluation and typing rules for sinks are:

( T:CONSUME)

Σ; x : Tx ` consume(A,p)(x) : unit

(A:CONSUME)

Σr ; x:A
p
0 consume(A,p)(x) : unit

(E:CONSUME)
q = q ′+Φ(E(x) : A)+p

E
q

q ′ consume(A,p)(x) ⇓ ()

(SR:CONSUME)
x : Sx ∈ Γs pc v k Sx Î k

pc;Σs ;Γs ` consume(A,p)(x) : (unit,k)

The extension of the proof of Theorem 1 to consume expressions is straightforward.

Adding consume expressions Let ei be a subexpression of e and let e ′i be the expression
let(z,consume(x1, · · · , xn), z.ei ) for some variables xi . Let e ′ be the expression obtained from e
by replacing ei with e ′i . We write e ,→ e ′ for such a transformation. Note that additional share
and let expressions have to be added to convert e ′i into share-let normal form. The following
lemma states that the transformed expression preserves the base type and evaluated value.

Lemma 9. If Σ;Γ` e : T , E ` e ⇓ v, and e ,→ e ′ then Σ;Γ` e ′ : T and E ` e ′ ⇓ v.

Proof. The proof is done by showing that if Σ;Γ ` ei : Ti and E ` ei ⇓ vi then Σ;Γ ` e ′i : Ti

and E ` e ′i ⇓ vi . It is easy to prove based on the form the sub-expression ei . For instance,
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we show the case of conditional expression. Suppose ei of the form if(x,et ,e f ), thus e ′i :=
let(z,consume(x1, · · · , xn), z.if(x,et ,e f )). By the weakening rule, Σ;Γ, z : unit ` if(x,et ,e f ) : Ti .
Then by the typing rules for let and share expressions, Σ;Γ ` e ′i : Ti . Since E ` ei ⇓ vi , thus
E [z 7→ ()] ` ei ⇓ vi . By the evaluation rules for let and share expressions, E ` e ′i ⇓ vi .

To transform an expression e into a constant resource expressions we perform multiple
transformations e ,→ e ′ which do not affect the type and semantics of e. This can be done
automatically but in our implementation it works in an interactive fashion, meaning that users
are responsible for the locations where consume expressions are put. The analyzer will infer the
annotations A and constants p of the given consume expressions during type inference. If the
inference is successful then we have const(e ′) for the transformed program e ′.

Example Recall the function compare form Fig. 5. To turn compare into a constant resource
function. We insert consume expressions as shown below. Users can insert many consume
expressions and the analyzer will determine which consume the are actually needed.

let rec c_compare h l = match h with
| [] → (match l with | [] → Raml.tick 1.0; true

| y::ys → Raml.tick 1.0; false)
| x::xs → match l with

| [] → Raml.tick 1.0; Raml.consume xs; false
| y::ys → if (x = y) then

Raml.tick 5.0; c_compare xs ys
else Raml.tick 5.0; Raml.consume xs; false

We automatically obtain the following typing of the transformed function and the consume
expressions:

c_compare : (L5(int),L0(int))
1/0−−→ bool

consume : L5(int)
5/0−−→ unit (at line 5)

consume : L5(int)
1/0−−→ unit (at line 8)

The worst-case resource consumption of the unmodified function c_compare h l is 1+ 5|h|.
Thus the consumption of the first consume must be 5+5(|h|−1−|`|) when h is longer than l .
Otherwise, the consumption is zero. The second one consumes 1+5(|h1|−1), where h1 is the
sub-list of h from the first node which is different from the corresponding node in l .

6 Implementation and Evaluation

Type Inference The type inference for the type systems for constant resource and lower bounds
are implemented in RAML [Ano15]. RAML is integrated in Inria’s OCaml compiler and supports
polynomial bounds, user-defined inductive types, higher-order functions, polymorphism, and
arrays and references. All features are implemented for the new type systems and are basically
orthogonal to the new ideas that we explained in the simplified setting of this article. The
implementation is publicly available as source code and in an easy-to-use web interface [Hof16].

The type inference is technically similar to the inference of upper bounds [HJ03]. We first
integrate the structural rules of the respective type system in the syntax directed rules. For
example, weakening and relaxation is applied at branching points such as conditional and
pattern matching. We then compute a type derivation in which all resource annotations are
replace by (yet unknown) variables. For each type rule we produce a set of linear constraints
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Constant Function LOC Metric Resource Usage Time

cond_rev : (L(int),L(int),bool) → unit 20 steps 13n+13x+35 0.03s
trunc_rev : (L(int), int) → L(int) 28 func calls 1n 0.06s
ipquery : L(logline) → (L(int),L(int)) 86 steps 86n+99 0.86s
kmeans : L(float,float) → L(float,float) 170 steps 1246n+3784 8.18s
tea_enc : (L(int),L(int),nat) → L(int) 306 ticks 128n2z+32nxz+1184nz+96n+128z+96 13.73s
tea_dec : (L(int),L(int),nat) → L(int) 306 ticks 128n2z+32nxz+1184nz+96n+96z+96 14.34s

Table 1: The computed resource usage in case of constant function, the computed
lower and upper bounds, and the run-time of the analysis in seconds. Note that
constant resource usage, lower and upper bounds are the same when a function is
constant. In the computed resource usage n is the size of the first argument, m =
max1≤i≤nmi where mi are the sizes the first argument’s elements, x is the size of
the second argument, y = max1≤i≤n yi where yi are the sizes the second argument’s
elements, and z is the value of the third argument.

that specify the properties of valid annotations. These linear constraints are then solved by the
LP solver CLP to obtain a type derivation in which the annotations are rational numbers.

An interesting challenge lies in finding a solution for the linear constraints that leads to the
best bound for a given function. For upper bounds, we simply disregard the potential of the
result type and provide an objective function that minimizes the annotations of the arguments.
The same strategy works the constant-time type systems. An interesting property is that the
solution to the linear program is unique if we require that the potential of the result type is
zero. To obtain the optimal lower bound we want to maximize the potential of the arguments
and minimize the potential of the result. We currently simply maximize the potential of the
arguments while requiring the potential of the result to be zero. Another approach would be to
first minimize the output potential and then maximize the input potential.

Resource-aware noninterference We are currently integrating our constant-time type system
with FlowCaml [Sim03]. The combined inference is based on the typing rules in Fig. 11. It is
possible to derive a set of type inference rules in the same way as for FlowCaml [SMZ99, PS02].
One of the challenges in the integration is interfacing FlowCaml’s type inference with our
constant-time type system in rule SR:C-GEN. In the implementation, we intend for each
application of SR:C-GEN to generate an intermediate representation of the expression in RAML
for the expression under consideration, in which all types are annotated with fresh resource
annotations along with the set of variables X . The expression is marked with the qualifier const
if a RAML can prove that it is constant time. The type inference algorithm always tries to apply
the syntax-directed rules first before using SR:C-GEN.

Evaluation Table 1 and shows the verification of constant resource usage, while Table 2 shows
the computation of lower and upper bounds for number of functions with different size in terms
of number of lines of code (LOC). The cost models are specified by several different cost metric,
i.e., number of evaluation steps, number of multiplication operations. Note that the computed
upper bounds are also the resource usages of functions which are padded using consume ex-
pressions. The experiments were run on machine with Intel Core i5 2.4 GHz processor and 8GB
RAM under the OS X 10.11.5. The run-time of the analysis of varies from 0.02 to 14.34 seconds
depending on the function code’s complexity. The example programs that we analyzed consist
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Function LOC Metric Lower Bound Time Upper Bound Time

compare : (L(int),L(int)) → bool 60 steps 7 0.05s 16n+7 0.09s
find : (L(int), int) → bool 40 steps 5 0.04s 14n+5 0.02s
rsa : (L(bool), int, int) → int 42 multiplications 1n 0.07s 2n 0.05s
filter : L(int) → L(int) 30 steps 13n+5 0.05s 20n+5 0.04s
isortlist : L(L(int)) → L(L(int)) 60 steps 21n+5 0.13s 12n2+9n 0.43s

+10n2m
−10nm+5

bfs_tree : (btree, int) → btree option 116 steps 15 0.30s 92n+24 0.32s

Table 2: The computed resource usage in case of constant function, the computed
lower and upper bounds, and the run-time of the analysis in seconds. Note that
constant resource usage, lower and upper bounds are the same when a function is
constant. In the computed resource usage n is the size of the first argument, m =
max1≤i≤nmi where mi are the sizes the first argument’s elements.

of commonly-used primitives (cond_rev , trunc_rev , compare , find , filter ), functions related
to cryptography (tea_enc , tea_dec , rsa), and examples taken from Haeberlan et al. [HPN11]
( ipquery , kmeans). The encryption functions tea_enc and tea_dec correspond to the encryp-
tion and decryption routines of the Corrected Block Tiny Encryption Algorithm [Yar10], a block
cipher presented by Needham and Wheeler in an unpublished technical report in 1998. Our
implementation correctly identifies these operations as constant-time in the number of primi-
tive operations performed. We applied this cost model for these examples due to the presence
of bitwise operations in the original algorithm, which are not currently supported in RAML. In
order to derive a more meaningful bound, we implemented bitwise operations in the example
source and counted them as single operations.

The two examples taken from Haeberlen et al. [HPN11] were originally created in a study
of timing attacks in differentially-private data processing systems. ipquery applies pattern
matching to a database derived from Apache server logs, counting the number of matches and
non-matches. kmeans implements the k-means clustering algorithm [Mac67], which partitions
a set of geometric points into k clusters that minimize the total inter-cluster distance between
points. Haeberlen et al. demonstrated that when a query applied to a dataset introduces attacker-
observable timing variations, then the privacy guarantees provided by differential privacy are
negated. To address this, they proposed a mitigation approach that enforces constant-time
behavior by aborting or padding the query’s runtime. Our implementation is able to determine
that these queries were constant-time to begin with, and thus did not need black-box mitigation.

7 Related work

Resource bounds Our work builds on past research on automatic amortized resource anal-
ysis (AARA). AARA has been introduced by Hofmann and Jost for a strict first-order func-
tional language with built-in data types to derive linear heap-memory bounds [HJ03]. It
has then been extended to polynomial bounds [HH10, HAH12, HS14] for strict and higher-
order [JHLH10, Ano15] functions. AARA has also been used to derive linear bounds for lazy
functional programs [SVF+12, VJFH15] and object-oriented programs [HJ06, HR13]. In another
line of work, the technique has been integrated into separation logic [Atk10] to derive bounds
that depend on mutable data structures, and into Hoare logic to derive linear bounds that
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depend on integers [CHRS14, CHS15]. The potential method of amortized analysis has also
been used to manually verify the complexity of algorithms and data structures using proof
assistants [Nip15, CP15].

As discussed in the introduction, AARA has been successfully extended to other resources
and language features [JHLH10, Cam09, SVF+12, VJFH15, HJ06, HR13, Atk10] and to polynomial
bounds [HH10, HAH11, HAH12, HM14, HM15]. Amortized analysis has also been used to verify
bounds on algorithms and data structures with proof assistants [Nip15, CP15]. In contrast to our
work, these techniques can only derive upper bounds and prove constant resource consumption.
This focus on upper bounds is shared with automatic resource analysis techniques that based on
sized types [VH03, Vas08], linear dependent types [LG11, LP13], and other type systems [CW00,
Dan08, ÇGA15]. Similarly, semiautomatic analyses [Gro01, Ben04, DLR12, ALM12] focus on
upper bounds too.

Automatic resource bound analysis is also actively studied for imperative languages us-
ing recurrence relations [ABG12, FH14, AFR15] and abstract interpretation [GMC09, BHHK10,
ZSGV11, SZV14, CHK+15]. While these techniques focus on worst-case bounds, it is possible to
use similar techniques for deriving lower bounds [AGM13]. The advantage of our method is that
it is compositional, deal well with amortization effects, and works for language features such as
user-defined data types and higher-order functions. Another approach to (worst-case) bound
analysis is based on techniques from term rewriting [AM13, NEG13, BEF+14], which mainly
focus on upper bounds. One line of work [FNH+16] derives lower bounds on the worst-case
behavior of programs which is different from our lower bounds on the best-case behavior.

Side channels Analyzing and mitigating potential sources of side channel leakage is an in-
creasingly well-studied area. Several groups have proposed using type systems or other program
analyses to transform programs into constant-time versions by padding out branches and loops
with “dummy” commands [Aga00, HS05, CVBS09, ZAM12, BRW06, MPSW06]. Because these
systems do not account for timing explicitly, as is the case for our work, this approach will
in nearly all cases introduce an unnecessary performance penalty. The most recent of these
systems by Zhang et al. [ZAM12] describes an approach for mitigating side channels using a
combination of security types, hardware assistance, and predictive mitigation [ZAM11]. Unlike
the type system given in Section 4, theirs does not guarantee that information is not leaked
through timing. Rather, they show that the amount of this leakage is bounded by the variation of
the mitigation commands.

Köpf and Basin [KB07] presented an information-theoretic model for adaptive side chan-
nel attacks that occur over multiple runs of a program, as well as an automated analysis for
measuring the corresponding leakage. Because their analysis is doubly-exponential in the num-
ber of steps taken by the attacker, they describe an approximate version based on a greedy
heuristic. Mardziel et al. later generalized this model to probabilistic systems [MAHC14], secrets
that change over time, and wait-adaptive adversaries. Pasareanu et al. [PPM16] proposed a
symbolic approach for the multi-run setting based on MaxSAT and model counting. Doychev
et al. [DFK+13] and Köpf et al. [KMO12] consider cache side channels, and present analyses
that over-approximate leakage using model-counting techniques. While these analyses are
sometimes able to derive useful bounds on the leakage produced by binaries on real hardware,
they do not incorporate security labels to distinguish between different sources, and were not
applied to verifying constant-time behavior.

FlowTracker [RQaPA16] and ct-verif [ABB+16] are both constant-time analyses built on top
of LLVM which reason about timing and other side-channel behavior indirectly through control
and address-dependence on secret inputs. VirtualCert [BBC+14] instruments CompCert with



Fredrikson, Hoffmann and Ngo 41

a constant-time analysis based on similar reasoning about control and address-dependence.
These approaches are intended for code that has been written in “constant-time style”, and
thus impose effective restrictions on the expressiveness of the programs that they will work on.
Because our approach reasons about resources explicitly, it imposes no a priori restrictions on
program expressiveness.

Information flow A long line of prior work looks at preventing information flows using type
systems. Sabelfeld and Myers [SM03] present an excellent overview of much of the early work
in this area. The work most closely related to our security type system is FlowCaml [PS02],
which provides a type system that enforces noninterference for a core of ML with references,
exceptions, and let-polymorphism. The portion of our type system that applies to traditional
noninterference coincides with the rules used in FlowCaml. However, the rules in our type
system are not only designed to track flows of information, but they are also used to incorporate
the information flow and resource usage behavior such as the rules SR:L-IF and SR:L-LET.
Moreover, our type system constructs a flexible interface between FlowCaml and the constant
resource type system for reasoning about resource consumption, meaning that the rules can be
easily adapted to integrate into any information flow type system.

The primary difference between our work and the prior work on information flow type
systems is best summarized in terms of our attacker model. Whereas prior work assumes an
attacker that can manipulate low-security inputs and observe low-security outputs, our type
system enhances this attacker by granting the ability to observe the program’s final resource
consumption. This broadens the relevant class of attacks to include resource side channels,
which we prevent by extending a traditional information flow type system with explicit reasoning
about the resource behavior of the program using AARA.

8 Conclusion

We have introduced new substructural type systems for automatically deriving lower bounds
and proving constant resource usage. The evaluation with the implementation in RAML shows
that the technique extends beyond the core language that we study in this paper and works
for realistic example programs. We have shown how the new type systems can interact with
information-flow type systems to prove resource-aware noninterference. Moreover, the type
system for constant resource can be used to automatically remove side-channel vulnerabilities
from programs.

There are many interesting connection between security and (automatic) quantitative re-
source analysis that we plan to study in the future. Two concrete projects that we already started
are the integration of the type systems for upper and lower bounds with information flow type
systems to precisely quantify the resource-based information leakage at certain security lev-
els. Another direction is to more precisely characterize the amount of information that can be
obtained about secretes by making one particular resource-usage observation.
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