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Abstract
Automated Verification of Asymmetric Encryption

Van Chan NGO
Supervisor: Cristian ENE, Yassine LAKHNECH

In the last two decades, two major directions in cryptography have developed:
formal and computational. In formal approaches, the knowledge of attack-
ers is often treated in terms of message deducibility and indistinguishability
relations. The formal approach uses simple, manageable formal languages
to describe cryptographic protocols; this approach is amenable to automa-
tization, suitable for computer tools, but its accuracy is often unclear. The
computational approach is harder to handle mathematically, involves prob-
ability theory and considers limits in computing power; proofs are done by
hand, but it is more accurate, hence widely accepted.
Much effort has been made to bridge the gap between the two approaches,
including the work in [4, 7, 8] who considered a formal logic of asymmetric
encryption and its interpretations in cryptosystems based on computational
complexity. Their setting has three important ingredients: a formal language
along with an equivalence notion of formal expressions, a computational
cryptosystem with the notion of computational equivalence of ensembles of
random distributions, and an interpreting function that assigns to each for-
mal expression an ensemble of distributions. We say that the interpretation
satisfies soundness if equivalence of formal expressions implies computational
equivalence of their interpretations, and satisfies completeness if computa-
tional equivalence of the interpretations requires equivalence of the expres-
sions.
As the previous work [7, 8] has shown that using static equivalence from
cryptographic pi calculus as a notion of formal indistinguishability yields
the soundness of the interpretations. But in several explicit examples in
which static equivalence fails to work. To fix the problem, the work in [8]
propose a notion of formal indistinguishability that is more flexible. Based
on this approach, we propose a new notion of formal non-deducibility that is
more flexible, manageable than the notion deducibility and non-deducibility
in [4, 5, 6, 8]. We also establish general soundness for the interpretation of
this notation of formal non-deducibility. The main results of this work are
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providing a general framework to verify the secure property (IND-CPA) of
asymmetric encryption schemes automatically, to be suitable for computer
tools. This general framework is constructed from the basic axioms on the
encryption primitives and along with general propositions that not only help
us to generate formal non-deducibility and formal indistinguishability re-
lations, but also guaranty the soundness of the interpretations. Finally we
discuss how this general framework works for some explicit examples.
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Introduction

Designing and verifying security protocol and encryption schemes are
complex problems; certain level of idealization is needed in order to provide
manageable mathematical treatment of the security protocols, encryption
and the notion of security. Idealizations necessarily omit some properties of
the real system, which might lead to leaks in the security. Two communi-
ties separately developed two families of models. Both views have been very
useful in increasing the understanding and quality of security protocol and
encryption design. The two main being a highly abstract treatment with the
help of formal logic based on the seminal work of Dolev and Yao [19], and
a more detailed description using complexity and probability theory which
are closer to implementations. In the former, cryptographic operations are
modeled as functions on a space of symbolic (formal) expressions and their
security properties are also treated formally. Examples are [1, 3, 19, 21, 22,
6, 7, 8, 5]. In the latter, cryptographic operations act on strings of bits, and
their security properties are defined in terms of probability and computa-
tional complexity. Examples for this treatment are [4, 23, 20, 21]. The first
approach has been labeled in the literature as formal view, whereas the sec-
ond as computational view.
The computational view gives a more detailed description of cryptographic
operations, taking limited computing power into account; probability plays
an important role as well. "Good protocols are those in which adversaries
cannot do something bad too often and efficiently enough" [4]. Keys, plain-
texts, ciphers are all strings of bits, encryption, decryption and adversaries
are all probabilistic algorithms, and a mathematically well-defined notion of
computability in polynomial-time is imposed on all these algorithms. A ma-
jor achievement of this approach has been that common notions of security
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such as secrecy, authentication, etc. were given mathematically precise def-
inition, hence clarifying them and making them amenable to mathematical
analysis. However, the detailed and less structured nature of this view makes
analyzing more complex protocols a very hard task, which calls for a higher
level, more abstract treatment.
On the other hand, the advantage of formal models is that security proofs
are generally simpler and suitable for automatic procedures, even for com-
plex protocols. Unfortunately, the high degree of abstraction and the lim-
ited adversary power raise questions regarding the security offered by such
proofs. Potentially, justifying symbolic proofs with respect to standard com-
putational models has tremendous benefits: protocols can be analyzed using
automated tools and still benefit from the security guarantees of the compu-
tational model.
Recently, a significant research effort has been directed at linking these two
approaches. In their seminal work [4], Abadi and Rogaway prove the com-
putational soundness of formal (symmetric) encryption in the case a passive
attacker. Since then, many results have been obtained. Each of these results
considers a fixed set of primitives, for instance symmetric or public-key en-
cryption. These efforts are developing rigorous mathematical treatment of
the relationship between the two models. It is hoped that they will even-
tually lead to a new generation of "high fidelity" automated tools for secu-
rity analysis, which will be able to express and implement the methods and
concepts of modern cryptography. We concentrate on non-deducibility and
static equivalence, a standard notion originates from the applied pi calculus
[1]. Many formal definitions explain the knowledge of an attacker in terms
of message deduction. Given a set of messages S and another message M ,
one asks whetherM can be computed from S. The messages are represented
by expressions, and correspondingly the computations allowed are symbolic
manipulations of those expressions. These computations can rely on any step
that an eavesdropper who has obtained the messages in S can perform on
its own in order to derive M . For instance, the eavesdropper can decrypt us-
ing known keys, and it can extract parts of messages. Despite its usefulness
in proofs about protocol behaviors, the concept of message deduction does
not always provide a sufficient account of knowledge, and it is worthwhile
to consider alternatives. For instance, suppose that we are interested in a
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protocol that transmits an encrypted boolean value, possibly a different one
in each run. We might like to express that this boolean value remains secret
by saying that no attacker can learn it by eavesdropping on the protocol. On
the other hand, it is unreasonable to say that an attacker cannot deduce the
well-known boolean values "true" and "false"’. Instead, we may say that the
attacker cannot distinguish an instance of the protocol with the value "true"
from one with the value "false". More generally, we may say that two sys-
tems are equivalent when an attacker cannot distinguish them, and we may
then express security guarantees as equivalences. The use of equivalences is
common in computational approaches to cryptography, and it also figures
prominently in several formal methods. Two systems that output messages
that an attacker can tell apart are obviously distinguishable. Conversely, in
order to establish equivalences between systems, an important subtask is to
establish equivalences between the messages that the systems generate (for
example, between the encrypted boolean values). These equivalences may
be called static equivalences, because they consider only the messages, not
the dynamic processes that generate them. Bi-simulation proof techniques
can reduce process equivalences to static equivalences plus fairly standard
bi-simulation conditions.
In this paper, we show that even though non-deducibility, static equivalence
work well to obtain soundness results for the cases analyzed, they do not work
well in other important cases, and a more flexible notion is needed. Our first
contribution is that we define and study the useful formal notations, called
the formal non-deducibility FNDR and formal indistinguishability relations
FIR. We require five properties from any FNDR, and based on these prop-
erties an any initial set of relations which is a subset of Fc×Tc will generate
a FNDR. In the similar way, four properties are required from any FIR, and
through these properties an initial set of relations will generate a FIR. Each
pair that is statically in-equivalent is also in-equivalent with respect to a for-
mal indistinguishability relation. Moreover, non-deducibility is one instance
of a FNDR, static equivalence is one instance of a FIR, respectively. We
also propose the propositions to generate a FNDR and a FIR from a set of
relations is a subset of closed frames and terms and a set of relations is a
subset of closed frames.
Our second contribution is a general relation for bridging formal and compu-
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tational models in the presence of a passive attacker. We define the notions
of soundness and faithfulness of a cryptographic implementation with re-
spect to equality, formal indistinguishability and formal (non-)deducibility
relations. Soundness holds when a formal notion of security has a compu-
tational interpretation. For instance, formal indistinguishability relation tu-
ples of messages (frames) should be computationally indistinguishable. Con-
versely, faithfulness holds when every formal attack on a given notion of
security can be mapped to an efficient computational attacker. In order to
test soundness with respect to a computational interpretation, it is enough to
check soundness on a set of relations that generate the FNDR or FIR in ques-
tion. If soundness holds on the generating set of relations, then soundness
holds in total. As an illustration, we consider an equational theory model-
ing Abelian groups with exponents taken over a commutative ring. We show
that the soundness of formal non-deducibility and indistinguishability rela-
tions are implied by the hardness of several classical problems in cryptogra-
phy, notably some asymmetric encryption schemes. Although not completely
surprising, this results illustrate well the expressive power of static equiva-
lence defined over tailored equational theories. Besides introducing the above
formal notions, we also make some other extensions in the theory of (non)-
deducibility and static equivalence by providing some useful propositions on
them.
Finally, our third contribution consists in generating the general framework
for verifying the property security of an asymmetric encryption scheme. This
general framework is based on the basic axioms on encryption primitives and
by using the useful propositions to generate a FNDR and FIR from a set of
pairs of closed frames and term a set of pairs of closed frames, respectively. If
the soundness is hold in the initial sets to generate a FNDR, and a FIR, then
it is still holds in total. After introducing the basic framework and proving
some general propositions about FNDR, and FIR, we discuss three exam-
ples. The first is Bellare and Rogaway’93 [12] asymmetric encryption. Our
second and third examples are REACT [13] and Pointcheval’s Transformer
[9], respectively.
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Chapter 1

Two Views of Cryptography

1.1 The Formal Encryption and Equivalence

In this section we present the formal view of cryptography, specifically
treating asymmetric encryption. In this formal setting, a set of expressions
correspond to the messages that are transmitted during a cryptography pro-
tocol or the data which is processed in an encryption scheme. Encryption
operates on the set of expressions, resulting new expressions. For example,
the expression {M}K may represent an encrypted message, with plaintext
M and the key K. All of {M}K ,M, and K are formal expressions, rather
than sequences of bits. And various functions can be applied to such expres-
sions, yielding other expressions. For example, decryption operation, which
produces M from {M}K and K. In our formal approach for asymmetric
encryption scheme, we concentrate on how to represent the output of an
encryption scheme as a concept of frame based on the syntax of expressions.
Then we explain a representation for the information available to an ob-
server who has seen message exchanged in the course of a protocol execution
or processes of an encryption scheme, the definitions and relations between
the concepts of deducibility, non-deducibility, and static equivalence, which
provide two formalizations of the knowledge that an attacker has on the basic
of that information. Finally, we introduce the relating between formal and
computational models and the soundness, faithfulness properties.

6



1.1.1 Abstract Algebras

Our abstract models - called abstract algebras consists of term algebras
over a many sorted first order signature and equipped with equational the-
ories. Most of the definitions here are adopted from the applied pi calculus
[1, 2, 3]. A signature Σ = (S,F) consists of a countably infinite set of sorts
with particular order ≤S ,S = {s, s1, ...} and a finite set of function symbols,
F = {f, f1, ...} together with arities of the form ar(f) = s1 × ... × sk →
s, k ≥ 0. Symbols that take k = 0 as arguments are called constants. Given
a signature Σ, a countably infinite set of names N and a countably infinite
set of variables X such that S,F ,X ,N are pairwise disjoint. We assume that
both names and variables are sorted, that is, to each name or variable u, a
subset Su is assigned; we write u : s and say u is of sort s whenever s ∈ Su.
We require that u : s1 and s1 ≤S s2 implies u : s2, that means the subset
Su has a minimum denoted as s(u). For any subset U of the set of names or
the set of variables, let [U ]s = {u ∈ U |s(u) = s}. A renaming is a bijection
τ : N → N such that s(a) = s(τ(a)). As usual, if a term T has sort s, we
write T : s. Terms of sort s are defined by the grammar:

L,M,N,T,U,V ::= terms
k,...,n,...,s name
x,y,z variable
f(M1, ...,Ml) function application
T ::= term of sort s
|x variable x of sort s
|a name a of sort s
|f(T1, ..., Tk) application of symbol f ∈ F

where f ranges over the function symbols of Σ and k matches the arity
ar(f) = s1 × ...× sk → s′, variables, names are of sort s, s′ ≤S s, and each
term Ti is of sort si for i = 1, ..., k. We denote fnames(M) and var(T) for
the set of free names and the set of variables that occur in the term M , re-
spectively. We use meta-variables u,v,w to range over names and variables.
A term is closed if and only if it does not have any free variables (but it may
contain names and constant symbols), that means var(T ) = φ.
The size of a term T denoted as size|T | is defined as:

|u| = 1; |f(T1, ..., Tk)| = 1 +
k∑
i=1

|Ti|.
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The DAG-size |T |DAG is the number of distinct subterms of T. The set of
all terms and closed terms will be denoted as T and Tc, respectively.
For instance, assume that the the finite set of sorts S consists these sort
A,Hash and Data such that A,Hash ≤S Data,. Then the term T = H(a)⊕
m, where a : A,H(a) : Hash,m, T : Data.

Definition 1 (Substitution) A substitution σ is written as σ = {x1 =

T1, ..., xn = Tn} with domain dom(σ) = {x1, ..., xn}.

We only consider well-sorted substitutions, that is, substitution σ = {x1 =

T1, ..., xn = Tn} for which xi and Ti have the same sort. A substitution is
called closed if and only if all of the terms Ti are closed. We let var(σ) =

∪ivar(Ti), names(σ) = ∪ifnames(Ti), and extend the notations var(.) and
names(.) to tuples and set of terms and substitutions in the obvious way.
The application of a substitution σ to a term T is written as σ(T ) = Tσ.
If p is a position of T , the expression T |p denotes the subterm of T at the
position p. The expression T [T ′]p denotes the term that is obtained after
replacing the subterm in position p on T by T ′.
Symbols in F are intended to model cryptographic primitives, whereas names
in N are used to model secrets, that is, concretely random numbers. The ab-
stract semantics of symbols is described by an equational theory E, that is
an equivalent relation (denoted as =E) which is stable with respect to ap-
plication of contexts and well-sorted substitutions of variables. We further
require that E is stable under substitution of names. And all the equational
theories that we consider here satisfy these properties. For instance, symmet-
ric and deterministic encryption in modeled by the theory Eenc generated
by the classical equation Eenc = {dec(enc(x, y) =Eenc x}. Or a trapdoor
one-way function in modeled by the theory E generated by the equation
E = {g(e, f(x, y)) =E (x, y)}, where g, f, e are the inverse function of f ,
trapdoor one-way function, extra information, respectively.

1.1.2 Frames, Deducibility, and Equivalence Relation

We use frames [2, 5] to represent sequences of information or the output
observed by an attacker when the encryption scheme is revoked. Formally,
we have the definition of a frame as follows:
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Definition 2 (Frame) A frame is an expression of the form ϕ = νñ.{x1 =

T1, ..., xn = Tn} where ñ is a set of restricted names or bounded names, and
for each i, Ti is a term of the same sort as xi and the name of ϕ is the free
name of all terms Ti.

A frame is closed frame if and only if all terms are closed. In what follows,
we use names(ϕ), fnames(ϕ) and bnames(ϕ) to represent the names, free
names, and bounded names of the frame ϕ, respectively. And the size of a
frame ϕ = νñ.{x1 = T1, ..., xn = Tn} is |ϕ| =

∑n
i=1 |Ti|.

For a frame ϕ = νñ.{x1 = T1, ..., xn = Tn}, if ϕ′ is another frame, let ϕϕ′

denote the frame νñ ∪ names(ϕ′).{x1 = T1ϕ
′, ..., xn = Tnϕ

′}. For frames
ϕ1, ..., ϕn with disjoint domains, let {ϕ1|ϕ2|...|ϕn} be the frame correspond-
ing to the combination of all the substitutions of ϕ1, ..., ϕn. Given two frames
ϕ = νñ.{x1 = T1, ..., xn = Tn}, ϕ′ = νñ.{x1 = T ′1, ..., xn = T ′n}, and the
equational theory E, we say that ϕ =E ϕ′ if and only if Ti =E T ′i for all
i. Obviously, we can see properties following: ϕ =E ϕ′ implies ψϕ =E ψϕ′

such that var(ψ) ⊆ dom(ϕ,ϕ′), ϕ =E ϕ′ implies τ(ϕ) =E τ(ϕ′) for every
renaming τ .
Given the cipertext or the output of an encryption scheme, we would like to
represent the knowledge of an attacker about the plaintext or secret informa-
tion or some parts of them. One of possible approaches is use the concept of
deducibility. First, we need to consider the definition of an equational theory
E and an equivalence respect to the equational theory.

Definition 3 (Equational Theory.) An equational theory for a given sig-
nature is an equivalence relation E ⊆ T ×T (written as =E in infix notation)
on the set of terms such that
(i) T =E T

′ implies Tσ =E T
′σ for every substitution σ

(ii) T1 =E T2 implies T{x = T1} =E T{x = T2} for every term T and every
variable x
(iii) T1 =E T2 implies τ(T1) =E τ(T2) for every renaming τ .

That means an equational theory is an equivalence relation on terms that is
stable under substitution of terms for variables, application of contexts, and
renaming.

Definition 4 (Equivalent) We say that two terms M and N are equal in
a frame ϕ for an equational theory E, and write (M =E N)ϕ, if and only if
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ϕ = νñ.σ,Mσ =E Nσ, and ñ ∩ (fnames(M) ∪ fnames(N)) = φ for some
names ñ and substitution σ.

Definition 5 (Deducibility) A (closed) term T is deducible from a frame
ϕ in an equational theory E, written ϕ ` T , if and only if there exists a
term M such that var(M) ⊆ dom(ϕ), fnames(M) ∩ bnames(ϕ) = φ and
(M =E T )ϕ.

Axiomatized by the rules.

νñ′.σ ` T
if ∃x ∈ dom(σ) such that x.σ = T

νñ′.σ ` s
if s 6∈ ñ′

ϕ ` T1 ... ϕ ` Tk
ϕ ` f(T1, ..., Tk)

where f ∈ F

ϕ ` T T =E T
′

ϕ ` T ′

Definition 6 (Non-Deducibility) We say that the (closed) term T is not
deducible from the frame ϕ in the equational theory E if there does not exist
any term M such that fnames(M) ∩ bnames(ϕ) = φ, var(M) ⊆ dom(ϕ)

and (M =E T )ϕ, denoted as ϕ 6` T.

For instance, we consider the equivalent theory Eenc and the frame ϕ1 =

νk1.k2.k3.k4.{x1 = enc(k1, k2), x2 = enc(k4, k3), x3 = k3}. Therefore, the
name k4 is deducible from ϕ1 since dec(x2, x3)ϕ1 =Eenc k4 but neither k1

nor k2 are deducible.
Deducibility is not always sufficient to account for the knowledge of an at-
tacker. For instance, it lacks partial information on secrets. Indeed, if we
consider a naive vote protocol where agents simply send their vote (0, or 1)
encrypted with some key, the security problem is not whether an attacker
can learn the values of 0, or 1, but rather whether the attacker can tell the
difference between a message that contains the vote 0 and a message that
contains the vote 1. That is why another classical notion in formal methods
is static equivalence.

Definition 7 (Statically Equivalent) Two frames ϕ1 and ϕ2 are stati-
cally equivalent in an equational theory E, written as ϕ1 ≈E ϕ2, if and only
if
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(i) dom(ϕ1) = dom(ϕ2);

(ii) for all terms M and N such that fnames(M,N)∩ bnames(ϕ1, ϕ2) = φ

and var(M,N) ⊆ dom(ϕ1), Mϕ1 =E Nϕ1 is equivalent to Mϕ2 =E Nϕ2.

For instance, the two frames νk.{x = enc(0, k)} and νk.{x = enc(1, k)} are
statically equivalent with respect to Eenc. However the two frames
νk.{x = enc(0, k), y = k} and νk.{x = enc(1, k), y = k}
are not (consider the test dec(x, y) =? 0), although the set of terms that can
be deduced from both frames is the same (0, 1 are two constants known by
the adversary). Other example is covering the Diffie-Hellmann Assumption,
the two frames νg.a.b.{x1 = g, x2 = ga, x3 = gb, x4 = gab) and νg.a.b.c.{x1 =

g, x2 = ga, x3 = gb, x4 = gc) are statically equivalent.

1.1.3 Concrete Semantics

We now give terms and frames a random oracle model by an implemen-
tation of the primitives. Provided a set of sorts S and a set of symbols F
as a set of function symbols, a (S,F) is called a computational algebra. A
computational algebra A consists of

– a non-empty set of bit-strings [[s]]A ⊆ {0, 1}∗ for each sort s ∈ S;
– a computable function [[f ]]A : [[s1]]A × ... × [[sk]]A → [[s]]A for each
f ∈ F with ar(f) = s1 × ...× sk → s;

– a computable congruence =A,s for each sort s, in order to check the
equality of elements in [[s]]A (the same element may be represented
by different bit-strings). By congruence, we mean a reflexive, symmet-
ric, and transitive properties such that e1 =A,s1 e

′
1, ..., ek =A,sk e

′
k ⇒

[[f ]]A(e1, ..., ek) =A,s [[f ]]A(e′1, ..., e
′
k) ( we usually omit s and write =A

for =A,s);
– an effective procedure to draw random elements from [[s]]A; we denote

such a drawing by x ←R [[s]]A; the drawing may not follow a uni-
form distribution, but there is no =A,s - equivalence class should have
probability 0.

Based on the computational model above, we will create a distribution (ψ) =

[[ϕ]]A which is associated to each closed frame ϕ = νñ.{x1 = T1, ..., xk = Tk}
and of which each drawing ψ̂ ←R (ψ) as following:

– for each name a of sort s appearing in these terms T1, ..., Tk, draw a
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value â←R [[s]]A;
– for each variable xi(1 ≤ i ≥ k) of sort si, compute T̂i ∈ [[si]]A recur-

sively on the structure of terms: f( ̂T ′
1, ..., T

′
m) = [[f ]]A(T̂ ′

1, ..., T̂
′
m);

– return the value ψ̂ = {x1 = T̂
′
1, ..., xk = T̂

′
k}.

– for each call h(â) if the value a in the hash table then return the
corresponding hash value. Otherwise, return randomly a value.

Such values φ = {x1 = e1, ..., xn = en} with ei ∈ [[si]]A are called concrete
frames. We extend the notation [.]A to (sets of) closed terms in the obvious
way. We also generalize the notation to terms or frames with variables that
means they are not closed, by specifying the concrete values for all of them:
[[.]]A, {x1 = e1, ...xn = en}. Notice that when a term or a frame contains no
names, the translation is deterministic; in this case, we use the same notation
to denote the distribution and its unique value.
We forcus on asymptotic notions of cryptographic security and consider fam-
ilies of computational model Aη indexed by a complexity parameter or secu-
rity parameter η ≥ 0. This parameter might be thought as the size of keys
and other secret values. The concrete semantics of a frame ϕ is a family
of distributions over concrete frame [[ϕ]]Aη . We only consider the computa-
tional model such that each required operation on models is feasible by a
polynomial-time algorithm in the complexity parameter η. That means that
the concrete frame is efficiently computable.
Families of distributions (ensembles) over concrete frames benefit from the
usual notion of cryptographic indistinguishability. Intuitively, two families
of distributions (ψη) and (ψ′η) are indistinguishable, written as (ψη) ≈ (ψ′η),
if and only if any probabilistic polynomial-time adversary A can not guess
whether she is given a sample from (ψη) or (ψ′η) with a probability signifi-
cantly greater than 1

2 . Formally, we ask the advantage of A,
AdvIND(A, η, (ψη), (ψ′η)) = P [ψ̂ ←R (ψη) : A(η, ψ̂) = 1] − P [ψ̂ ←R (ψ′η) :

A(η, ψ̂) = 1].
to be a negligible function of the security parameter η, that is, to remain
eventually smaller than any η−n(n > 0) for sufficiently η. A family of dis-
tributions (ψη) is collision-free with respect to the family of congruences
=Aη iff the probability of collision between two random elements from (ψη),
that is P [e1, e2 ←R (ψη) : e1 =Aη e2] is a negligible function of η. Note
that, this is equivalent to asking that the probability of sampling any e0
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from (ψη), P [e ←R (ψη) : e =Aη e0], is uniformly bounded from above by a
negligible function of η.

1.2 The Computational View of Asymmetric En-

cryption Schemes

1.2.1 Asymmetric Encryption Schemes

The computational modeling of encryption schemes provides a much
more detailed description of a cryptographic protocol than the formal lan-
guage that we present in the previous section. It captures the fact that key
generation and encryption is probabilistic, and it includes the fact that com-
puters have limits in their computational power. Here, key generation algo-
rithms are represented by random variables, messages are bit strings of finite
length, and algorithms, like encryption, decryption, key generation process,
must be computable in polynomial-time relative to a parameter is called "se-
curity parameter".
The field of actions here is the set of strings := {0, 1}∗. A fixed subset,
plaintext ⊆ strings represents the messages that are allowed to be en-
crypted. We fix an element 0 in plaintext. Another subset, keys ⊆ strings

is chosen for the possible encrypting keys. In order to be able to build up
messages from basic ingredients, we assume that an injective pairing func-
tion is given:
[., .] : strings × strings → strings. The range of the pairing function will
be called pairs. A asymmetric encryption scheme is given by a triple of
algorithms, Π = (K, E ,D) (see the figure following), where

Security parameter. A security parameter η ranges over all natural val-
ues. Computationally, it is a finite string that contains only bit 1, as many
as its value. The purpose of security parameter is to measure the difficulty
of computation. Function, defined in term of η are tested if they are com-
putable in the time interval no larger than some polynomial function of η. In
some encryption scheme, security parameter can be the length of the keys.

K, Keys generation algorithm. Keys for encryption are assumed to
be randomly generated. The random generation must be computable in
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Figure 1.1: Asymmetric Encryption

polynomial-time with respect to the security parameter η. And returns ran-
domly a pair (pk, sk) in the set keys× keys, of matching public and secret
keys.

E, Encryption algorithm. is a probabilistic algorithm that takes a pub-
lic key pk and a message x in plaintext to procedure a ciphertext y. The
encryption of x using the public key pk as the encrypting key is a ran-
dom variable over some discrete probability field. The values of this random
variable are in strings and will be denoted as Epk(x). We assume that this
algorithm is polynomial-time computable in η whenever it is defined. And let
ciphers ⊆ strings is the set of all encryptions of (x, pk) ⊆ plaintext× keys.

D, Decryption algorithm. is a deterministic algorithm which takes a se-
cret key sk and ciphertext y to produce either a message in plaintext or a
special symbol perp to indicate that the ciphertext is invalid, and satisfying
Dsk(Epk(x)) = x or ⊥. Again D must be polynomial-time computable.

1.2.2 Definitions of Security

In the computational setting, we assume that an adversary has access to
computers with limited computing power. The purpose of security is that an
adversary should have very small probability of getting valuable information
about encrypted messages, which is expressed mathematically as having little
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chance to tell different ciphers from apart. Namely, messages are random
variables, since key generation and encryption is random; more exactly, they
are sets of random variables (because of the security parameter), and the
adversary is trying to distinguish these random sets. In order to express
what it means to have little chance to distinguish two sets, we need the
notion of negligible function:

Definition 8 (Negligible Function) A function ε : N → R is said to be
negligible, if for any c > 0, there is a nc ∈ N such that ε(η) ≤ η−c whenever
η ≥ nc.

This section provides formal definitions for the definitions of security of an
asymmetric encryption discussed in previous section.

Experiments. We use standard notations and conventions for writing
probabilistic algorithms and experiments. If A is a probabilistic algorithm,
then A(x1, x2, ...; r) is the result of running A on inputs x1, x2, ... and coins
r. We let y ← A(x1, x2, ...) denote the experiment of picking r at random
and letting y be A(x1, x2, ...; r). If S is a finite set then x ← S is the oper-
ation of picking an element uniformly from S. If α is neither an algorithm
nor a set then x ← α is a simple assignment statement. We say that y can
be outputted by A(x1, x2, ...) if there is some r such that A(x1, x2, ...; r) = y.
The formalizations that follow have a common framework that it may help
to see at a high level first. In formalizing both indistinguishability and non-
malleability we regard an adversary A as a pair of probabilistic algorithms,
A = (A1, A2). (We will say that A is polynomial-time if both A1 and A2

are.) This corresponds to A running in "‘two stages"’. The exact purpose
of each stage depends on the particular adversarial goal, but for both goals
the basic idea is that in the first stage the adversary, given the public key,
seeks and outputs some test instance, and in the second stage the adversary
is issued a challenge ciphertext y generated as a probabilistic function of
the test instance, in a manner depending on the goal. (In addition A1 can
output some state information s that will be passed to A2.) Adversary A

is successful if she passes the challenge, with what "‘passes"’ means again
depending on the goal. We consider three types of attacks under this setup.
In a chosen-plaintext attack (CPA) the adversary can encrypt plaintexts
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of her choosing. Of course a CPA is unavoidable in the public-key setting:
knowing the public key, an adversary can, on her own, compute a ciphertext
for any plaintext she desires. So in formalizing definitions of security under
CPA we do nothing beyond giving the adversary access to the public key;
that’s already enough to make a CPA implicit.
In a non-adaptive chosen-ciphertext attack (CCA1) we give A1 (the public
key) and access to a decryption oracle, but we do not allow A2 access to a
decryption oracle. This is sometimes called a non-adaptive chosen-ciphertext
attack, in that the decryption oracle is used to generate the test instance,
but taken away before the challenge appears.
In an adaptive chosen-ciphertext attack (CCA2) we continue to give A1 (the
public key) and access to a decryption oracle, but also give A2 access to
the same decryption oracle, with the only restriction that she cannot query
the oracle on the challenge ciphertext y. This is an extremely strong attack
model.
The number i in CCAi can be regarded as the number of adversarial stages
during which she has access to a decryption oracle. Additionally, the bigger
number corresponds to the stronger (and chronologically later) formaliza-
tion. By the way: we do not bother to explicitly give A2 the public key,
because A1 has the option of including it in s.

Indistinguishability of Encryptions. The classical goal of secure en-
cryption is to preserve the privacy of messages: an adversary should not be
able to learn from a ciphertext information about its plaintext beyond the
length of that plaintext. We define a version of this notion, indistinguishabil-
ity of encryption (IND), following, through a simple experiment. Algorithm
A1 is run on input the public key, pk. At the end of A′s execution she out-
puts a triple (x0, x1, s), the first two components being messages which we
insist be of the same length, and the last being state information (possibly
including pk) which she wants to preserve. A random one of x0 and x1 is
now selected, say xb. A challenge y is determined by encrypting x under pk.
It is A2’s job to try to determine if y was selected as the encryption of x0 or
x1 , namely to determine the bit b. To make this determination A2 is given
the saved state s and the challenge ciphertext y.
For concision and clarity we simultaneously define indistinguishability with
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respect to CPA, CCA1, and CCA2. The only difference lies in whether or not
A1 and A2 are given decryption oracles. We let the string atk be instantiated
by any of the formal symbols cpa, cca1, cca2, while ATK is then the cor-
responding formal symbol from CPA, CCA1, CCA2. When we say Oi = ε,
where i = 1, 2, we mean Oi is the function which, on any input, returns the
empty string, ε.

Definition 9 (IND-CPA, IND-CCA1, IND-CCA2) Let Π = (K, E ,D)

be an encryption scheme and let A = (A1, A2) be an adversary. For atk
in {cpa, cca1, cca2} and k ∈ N let Advind−atkA,Π (k) =def 2.P r[(pk, sk) ←
K(1η); (x0, x1, s) ← AO1

1 (pk); b ← {0, 1}; y ← Epk(xb) : AO2
2 (x0, x1, s, y) =

b]− 1

where
If atk = cpa then O1(.) = ε and O2(.) = ε

If atk = cca1 then O1(.) = Dsk(.) and O2(.) = ε

If atk = cca2 then O1(.) = Dsk(.) and O2(.) = Dsk(.)

We insist, above, that A1 outputs x0, x1 with |x0| = |x1|. In the case of
CCA2, we further insist that A2 does not ask its oracle to decrypt y. We say
that Π is secure in the sense of IND-ATK if A being polynomial-time implies
that Advind−atkA,Π (.) is negligible

1.3 Soundness and Faithfulness

The computational model of a cryptographic scheme is in a sense closer
to reality than its formal representation by being a more detailed descrip-
tion. Therefore, the accuracy of a formal model can be characterized based
on how close it is to the computational model. This is the reason that we
introduce the notions of sound and faithful computational algebras with re-
spect to the formal relations studied here: equality, static equivalence and
deducibility. Let E be an equivalence theory and R1 ⊆ Fc×Fc, R2 ⊆ Tc×Tc,
and R3 ⊆ Fc × Tc are relations on closed frames, on closed terms, and re-
lation on closed frames and terms, respectively. We denote Rc1, Rc2 are the
corresponding concrete relations. A family of computational algebras (Aη) is

– R1-sound iff for every closed frames ϕ1, ϕ2 with the same domain such
that (ϕ1, ϕ2) ∈ R1 implies that for any probabilistic polynomial-time
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adversary A, the advantage of A is: P [([[ϕ1]]Aη , [[ϕ2]]Aη) ∈ Rc1] is non-
negligible.

– R1-faithful iff for every closed frames ϕ1, ϕ2 with the same domain
such that (ϕ1, ϕ2) 6∈ R1 implies that for any probabilistic polynomial-
time adversary A, the advantage of A is: P [([[ϕ1]]Aη , [[ϕ2]]Aη) ∈ Rc1] is
negligible.

– R2-sound iff for every closed terms T1, T2 such that (T1, T2) ∈ R2

implies that for any probabilistic polynomial-time adversary A, the
advantage of A is: P [ê1, ê2 ←R [[T1, T2]]Aη : (ê1, ê2)) ∈ Rc2] is non-
negligible.

– R2-faithful iff for every closed terms T1, T2 such that (T1, T2) 6∈ R2

implies that for any probabilistic polynomial-time adversary A, the
advantage of A is: P [ê1, ê2 ←R [[T1, T2]]Aη : (ê1, ê2)) ∈ Rc2] is negligi-
ble.

– R3-sound iff for every closed frame ϕ and term T such that (ϕ, T ) ∈ R3

implies that for any probabilistic polynomial-time adversary A, the
advantage of A is: P [ψ̂, ê ←R [[ϕ, T ]]Aη ê′ ← A(η, ψ̂) : (ê′, ê)) ∈ Rc2] is
non-negligible.

– R3-faithful iff for every closed frame ϕ and term T such that (ϕ, T ) 6∈
R3 implies that for any probabilistic polynomial-time adversary A, the
advantage of A is: P [ψ̂, ê ←R [[ϕ, T ]]Aη ê′ ← A(η, ψ̂) : (ê′, ê)) ∈ Rc2] is
negligible.

Let E be the equivalence theory and a family of computational algebras (Aη)

as above. The statements following are particular cases of the soundness and
faithfulness as we have considered if we consider the concrete relations of =E

,≈E and 6` in computational algebras (Aη) are =Aη ,≈ and 6`Aη , respectively.
The pair of concrete frame and term (ψ̂, ê) ∈6`Aη if there does not exist any
concrete term ê′ of the term M ′ such that fnames(M ′) ∩ bnames(ϕ) =

φ; var(M ′) ⊆ dom(ϕ) and ê′ =Aη ê.
– =E-sound iff for every frames ϕ1, ϕ2 with the same domain, ϕ1 =E ϕ2

implies that P [ψ̂1, ψ̂2 ←R [[ϕ1, ϕ2]]Aη : ψ̂1 =Aη ψ̂2] is non-negligible;
– =E-faithful iff for every frames ϕ1, ϕ2 with the same domain, ϕ1 6=E ϕ2

implies that P [ψ̂1, ψ̂2 ←R [[ϕ1, ϕ2]]Aη : ψ̂1 =Aη ψ̂2] is negligible;
The reason why we do not use adversaries in this definition. For example,
would it not make more sense to define =E-sound so that for each pair of
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closed frames ϕ1 and ϕ2 if ϕ1 =E ϕ2 holds, then [[ϕ1]]Aη ≈ [[ϕ2]]Aη , or for
each pair of closed terms T1 and T2 if T1 =E T2 holds, then [[T1, T2]]Aη ≈
[[T1, T1]]Aη . However, using the fact that the advantage of an adversary trying
to distinguish the two distributions cannot exceed the statical distance, it is
easy to show that this definition would be equivalent to what is given above.
These soundness definitions following are particular cases:

– =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E T2

implies that P [e1, e2 ←R [[T1, T2]]Aη : e1 =Aη e2] is non-negligible;
– =E-faithful iff for every closed terms T1, T2 of the same sort, T1 6=E T2

implies that P [e1, e2 ←R [[T1, T2]]Aη : e1 =Aη e2] is negligible;
– ≈E-sound iff for every frames ϕ1, ϕ2 with the same domain, ϕ1 ≈E ϕ2

implies that ([[ϕ1]]Aη) ≈ ([[ϕ2]]Aη);
– ≈E-faithful iff for every frames ϕ1, ϕ2 with the same domain, ϕ1 6≈E ϕ2

implies that there exists a polynomial-time adversary A for distin-
guishing concrete frames, such that AdvIND(A, η, [[ϕ1]]Aη , [[ϕ2]]Aη) is
non-negligible;

– 6`-sound iff for every frame ϕ and closed terms T such that ϕ 6` T

implies for each polynomial-time adversary A, P [φ̂, ê ←R [[ϕ, T ]]Aη :

A(η, φ̂) =Aη ê] is negligible;
– 6`-faithful iff for every frame ϕ and closed terms T such that ϕ ` T

implies that there exists a polynomial-time adversary A, such that
P [φ̂, ê←R [[ϕ, T ]]Aη : A(η, φ̂) =Aη ê] is non-negligible.

The soundness and faithfulness of formal non-deducibility relation and formal
indistinguishability are introduced in next chapter.
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Chapter 2

Formal Non-Deducibility and
Formal Indistinguishability
Relations

In this section, we propose a non-deducibility relation which is more
flexible notion than non-deducibility that is defined in chapter 1. It is also
necessary to fit a number of interesting cases for which non-deducibility
is not appropriate. For instance, consider the property of a trapdoor one-
way function. It is very difficult to capture its properties by using the de-
ducibility. We can not find all the terms (about the argument) that an ad-
versary can learn from the image of this function as νa.b.{x = f(a, b)} `
a; νa.b.{x = f(a, b)} ` a ⊕ c; νa.b.{x = f(a, b)} ` g(a, c) for any free sym-
bol g and so on. Therefore, the use of non-deducibility is more suitable in
the view of information security: non-deducibility represents the knowledge
of an adversary that what he can not learn from the set of messages like
νa.{x = f(a)} 6` a. However, much more non-deducibility is allowed. For
example, νa.{x = f(a)} 6` a; νa.{x = f(a)} 6` a ⊕ b; and an infinitude of
statements maybe not necessarily implies by the properties of a trapdoor
one-way function. The analysis often goes in the other direction: the result is
that not a given formal model has to be interpreted in a sound manner. We
argue that a non-deducibility relation more useful is necessary. We call this
type of relation is a formal non-deducibility relation (FNDR) which requires
five properties from any FNDR, and through these properties an initial set of
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relations will generate a FNDR. Moreover, non-deducibility is one instance
of FNDR. In order to test the sound property with respect to a computa-
tional interpretation, it is enough to check soundness on a set of relations
that generate the FNDR in question. If soundness holds on the generating
set of relations, then soundness holds in total. As in the work in [7, 6], the
static equivalence does not work well in some important cases, and a more
flexible notion is needed. For example, consider the Decisional Diffie-Hellman
assumption. As Baudet et al. describe in [6], in an equivalent theory, 4-tuples
(g, ga, gb, gab) and (g, ga, gb, gc) are statically equivalent. Therefore, if the in-
terpretation of the theory in certain computational group scheme is sound,
then this scheme satisfies DDH assumption. However, formally much more
is equivalent. For example, (g, ga, gb, ab) and (g, ga, gb, c) are also statically
equivalent, and so on, an infinitude of statements not necessarily implied by
the DDH assumption would be satisfied. Moreover, the analysis often goes in
the other direction: not given formal model has to be interpreted in a sound
manner, but for a given computational model we are looking for a formal
theory that is simply, yet sound. That is how the formal indistinguishabil-
ity relation (FIR) is formed. We require four properties from any FIR, and
through these properties an initial set of relations will generate a FIR. In the
similar way as the notion FNDR, to test soundness with respect to a compu-
tational interpretation, it is enough to check soundness on a set of relations
that generate the FIR in question. If soundness holds on the generating set
of relations, then soundness holds in total. And also statically equivalent is
one instance of FIR.

2.1 Formal Non-Deducibility Relation

2.1.1 Weak Formal Non-Deducibility Relation

Definition 10 (wFNDR.) A weak formal non-deducibility relation-wFNDR
with respect to an equational theory E (written as 6|=w) is a relation on the
set of closed frames and the set of closed terms such that for any closed frame
ϕ and closed term M , if ϕ 6|=w M

(i) Then τ(ϕ) 6|=w τ(M), for any renaming τ ;
(ii) And M =E N then ϕ 6|=w N ;
(iii) And ϕ =E ϕ

′ then ϕ′ 6|=w M ;
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(iv) for any frame ϕ1 such that var(ϕ1) ⊆ dom(ϕ) and names(ϕ1) ∩
bnames(ϕ) = φ then ϕ1ϕ 6|=w M .

Remark 1 Two frames ϕ′ = νñ.{xi = T ′i}, ϕ” = νñ.{xi = T ”
i }, for all

i = 1, ..., k, ϕ′ =E ϕ” iff T ′i =E T ”
i ,∀i. Note that we only consider two

frames such that they have the same set of bound names. If ϕ1, ϕ2 are closed
frames such that dom(ϕ1)∩dom(ϕ2) = φ, and names(ϕ2)∩bnames(ϕ1) = φ

and ϕ1 6|=w M,ϕ2 6|=w M , then {ϕ1|ϕ2} 6|=w M .

The reason is following. If dom(ϕ1) = {x1, ..., xk}, then let ψ = {x1 =

x1, ..., xk = xk|ϕ2}. Since var(ψ) = {x1, ..., xk} ⊆ dom(ϕ1);names(ψ) ∩
bnames(ϕ1) = names(ϕ2)∩ bnames(ϕ1) = φ. Using property (iv), it follows
that ψϕ1 = {ϕ1|ϕ2} 6|=w M .

We propose here some useful propositions of a weak formal non-deducibility,
the proposition of soundness is also proved.

Proposition 1 Non-Deducibility relation 6` is a weak formal non-deducibility
relation 6|=w with respect to the equational theory E.

Proof. We will show that 6` satisfies the properties of a weak formal non-
deducibility relation. First, we show that these properties (i), (ii), and (iii)
are satisfied by 6`. By the definition of non-deducibility, for every closed frame
ϕ and closed termM such that ϕ 6`M , we have τ(ϕ) 6` τ(M). For any frame
ϕ and closed terms M and N such that ϕ 6` M and M =E N then ϕ 6` N
duce to the transitive property of the equivalent theory E. And with any
frames ϕ,ϕ′ and closed termsM such that ϕ 6`M and ϕ =E ϕ

′ then ϕ′ 6`M
because for any term T if Tϕ =E M then Tϕ′ =E M .
Let frames ϕ,ϕ1 and a closed term M as in (iv). We have to show that if
ϕ1 6` M then ϕϕ1 6` M . Assume that ϕϕ1 ` M , so by the definition of de-
ducibility relation, there exists a term T such that var(T ) ⊆ dom(ϕϕ1) and
fnames(T )∩ bnames(ϕϕ1) = fnames(T )∩ (bnames(ϕ)∪names(ϕ1)) = φ.
This implies fnames(T ) ∩ bnames(ϕ1) = φ. And T (ϕϕ1) =E M . Consider
term Tϕ, we have fnames(Tϕ)∩bnames(ϕ1) = (fnames(T )∪names(ϕ))∩
bnames(ϕ1) = φ; var(Tϕ) ⊆ var(ϕ) ⊆ dom(ϕ1).And T (ϕϕ1) =E (Tϕ)ϕ1 =E

M. Therefore, ϕ1 ` M . Contradiction. Therefore, ϕϕ1 6` M . That means 6`
satisfies the property (iv).
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2

Proposition 2 The intersection of an arbitrary number of weak formal non-
deducibility relations with respect to the same equational theory E is a weak
formal non-deducibility relation.

Proof. Let (6|=w,i)i∈I , where I is some indexing set, be a sequence of weak
formal non-deducibility relations with respect to the same equational theory
E, and let (6|=w) be their intersection. We will show that (6|=w) satisfies
the properties (iv). Let ϕ,ϕ1 be as in (iv). Because (ϕ1,M) ∈ (6|=w,i), so
ϕ1 6|=w,i M ;ϕϕ1 6|=w,i M for all i, then ϕ1 6|=w M ;ϕϕ1 6|=w M . In the similar
way, we can prove that (6|=w) satisfies also the other properties.

2

Proposition 3 Consider a set S̃ ⊆ Fc×Tc. If S ⊆ S̃ is a relation on a closed
frame and a term. Then there is a unique smallest subset 〈S〉wFNDR ⊆ S̃

containing S, such that 〈S〉wFNDR is a weak formal non-deducibility relation
with respect to the equivalent theory E. We can generate the 〈S〉wFNDR like
that. Let

〈S〉wFNDR :=


(ϕ′,M ′) ∈ Fc × Tc | ∃ϕ,ψ,M such that (ϕ,M) ∈ S,
ϕ′ =E τ(ψϕ),M ′ =E τ(M) where
names(ψ) ∩ bnames(ϕ) = φ, var(ψ) ⊆ dom(ϕ)

For instance, we consider an example to show how a frame ψ is constructed
such that var(ψ) ⊆ dom(ϕ) and names(ψ) ∩ bnames(ϕ) = φ. This frame
can be constructed from the closed frames in the set S. For example, as-
sume that (ϕ2,M) ∈ S such that names(ϕ1) ∩ names(ϕ2) = φ. Then we
can construct ψ = {ϕ1|x1, ..., xk}, where {x1, ..., xk} = dom(ϕ2). Therefore,
(ϕ′ = ψϕ2,M) ∈ 〈S〉wFNDR. That means ({ϕ1|ϕ2},M) ∈ 〈S〉wFNDR.

Proof. For the first statement, we will show the existence of the smallest
set. We call the set S′ = {S” | S ⊆ S” with S” is a wFNDR}. Then the
smallest set Ŝ is the intersection of all the sets in S′. By the proposition
2, Ŝ is a wFNDR. By the definition of the construction of 〈S〉wFNDR, it
is clear that S ⊆ 〈S〉wFNDR. We will show that 〈S〉wFNDR is a wFNDR.
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That means we have to show that 〈S〉wFNDR satisfies all the properties
of a wFNDR. By the generation of 〈S〉wFNDR, we can see that it sat-
isfies the properties (i), (ii), (iii) of a weak formal non-deducibility re-
lation. So we have to show that it will satisfy the property (iv). Let ϕ
is a frame such that var(ϕ) ⊆ dom(ϕ1), names(ϕ) ∩ bnames(ϕ1) = φ,
and (ϕ1,M) in 〈S〉wFNDR then we show that (ϕϕ1,M) also in 〈S〉wFNDR.
Because (ϕ1,M) in 〈S〉wFNDR, the form is ϕ1 =E τ(ψϕ′) and M =E

τ(M ′) such that (ϕ′,M ′) in S with the conditions var(ψ) ⊆ dom(ϕ′) and
names(ψ)∩ bnames(ϕ′) = φ. We can see that names(ϕ)∩ bnames(ϕ′) = φ,
because bnames(ϕ1) = bnames(ψ)∪bnames(ϕ′). Consider the frame ϕψ, we
have names(ϕψ)∩bnames(ϕ′) ⊆ [names(ϕ)∪names(ψ)]∩bnames(ϕ′) = φ.
By the condition of the frame ϕ, var(ϕ) ⊆ dom(ϕ1) and dom(ϕ1) = dom(ψ),
so var(ϕψ) ⊆ var(ψ). Moreover, var(ψ) ⊆ dom(ϕ′). That means var(ϕψ) ⊆
dom(ϕ′). The pair of a closed frame and a term (ϕϕ1 =E (ϕψ)ϕ′,M =E M

′)

with the pair of closed frame and term (ϕ′,M ′) in S. Therefore, (ϕϕ1,M)

also in 〈S〉wFNDR. Therefore, Ŝ ⊆ 〈S〉wFNDR. Consider any pair of closed
frame and term (ϕ′,M ′) ∈ 〈S〉wFNDR, by the generation, we see that ∀S” ⊆
S′, (ϕ′,M ′) ∈ S”. That implies 〈S〉wFNDR ⊆ Ŝ.

2

Proposition 4 Let a computational algebra that is =E −sound. Let S ⊆ S̃
is a relation on closed frames and terms such that S is sound. Then the
weak formal non-deducibility relation 〈S〉wFNDR is sound with respect to the
equational theory E.

First, we consider the definition of the soundness of 〈S〉wFNDR. This defini-
tion is a particular case of the soundness definition in the section soundness
and faithfulness in the chapter 1.

Definition 11 〈S〉wFNDR-sound if and only if for every pair of a closed
frame and a term (ϕ,M) in 〈S〉wFNDR implies that for every probabilistic
polynomial-time adversary B, its advantage P [φ̂, ê ←R [[ϕ,M ]]Aη ; ê′ ←R

B(η, φ̂) : ê′ =Aη ê] is negligible.

Proof. To show 〈S〉wFNDR-sound, we will show that all pairs of a closed
frame and term implies for any probabilistic polynomial-time adversary whose
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advantage: P [φ̂, ê←R [[ϕ,M ]]Aη ; ê′ ←R A(η, φ̂) : ê′ =Aη ê] is negligible. Let
(ϕ′,M ′) is any pair of a closed frame and term in 〈S〉wFNDR. By the defi-
nition of the generation there exists a pair (ϕ,M) ∈ S and a term ψ with
names(ψ)∩ bnames(ϕ) = φ; var(ψ) ⊆ dom(ϕ), ϕ′ =E τ(ψϕ),M ′ =E τ(M).
Because two families of distributions [[ψϕ]]Aη and [[τ(ψϕ)]]Aη are the same.
And the soundness of =E . Therefore, to show (ϕ′,M ′) is sound equiva-
lent to show that (ψϕ,M) is sound. We will show that for any frame ϕ1,
closed term M and any frame ϕ such that var(ϕ) ⊆ dom(ϕ1);names(ϕ) ∩
bnames(ϕ1) = φ. For any probabilistic polynomial-time adversary A whose
advantage: P [φ̂, ê ←R [[ϕ1,M ]]Aη ; ê′ ←R A(η, φ̂) : ê′ =Aη ê] is negligi-
ble implies P [φ̂′, ê ←R [[ϕϕ1,M ]]Aη ; ê′ ← B(η, φ̂′) : ê′ =Aη ê] is negli-
gible for any probabilistic polynomial-time adversary B. Suppose that B
can deduce the closed term M from the frame ϕϕ1 with the advantage
P [φ̂′, ê ←R [[ϕϕ1,M ]]Aη ; ê′ ← B(η, φ̂′) : ê′ =Aη ê] is non-negligible. This
gives the adversaryA can deduce the closed termM from ϕ1 in a polynomial-
time algorithm: Given the concrete frame φ̂, ê are sampled from the fam-
ily distribution [[ϕ1,M ]]Aη . The adversary A interprets the frame ϕ using
the values, specified by φ̂ for the variables in ϕ. All these variables are as-
signed a unique values of φ̂ is sampled from ϕ1 since var(ϕ) ⊆ dom(ϕ1).
A constructs a concrete frame σ̂ and runs B(η, σ̂). Then the output is B’s
output. The family of distribution of σ̂ is exactly the family of distribu-
tion [[ϕϕ1]]Aη . Therefore, the advantage of A equals the advantage of B,
which is non-negligible. In addition, A runs in probabilistic polynomial-time
since the size of encoding of ϕ is constant in η, so the concrete frame σ̂
can computed in probabilistic polynomial-time. Contradiction. Therefore,
P [φ̂′, ê ←R [[ϕϕ1,M ]]Aη ; ê′ ← B(η, φ̂′) : ê′ =Aη ê] is negligible for any prob-
abilistic polynomial-time adversary B.

2

2.1.2 Formal Non-Deducibility Relation

Definition 12 (FNDR.) A formal non-deducibility relation-FNDR with re-
spect to an equational theory E (written as 6|=) is a relation on the set of pairs
of a closed frame and a closed term such that 6|= is a wFNDR and satisfies
(v) for any free symbol g and ϕ 6|= g(T1, ..., Tk) then there exists some terms
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Ti, with i ∈ {1, ..., k} such that ϕ 6|= Ti.

Proposition 5 Let the set pairs of closed frames and terms S is a wFNDR,
and 〈S〉(v) is the set of all the possible extensions R on S with respect to
the property: if (ϕ, g(T1, ..., Tk)) ∈ R, where g is any free symbol in F ,
then (ϕ, Ti) ∈ R for some subterms Ti. These extensions are formal non-
deducibility relations. If S is sound then there exist some extension r in
〈S〉(v) on S which is sound.

For instance, we will consider an example of the extensions, let S is a
wFNDR:
S = {(ϕ, a), (ϕ1, b), (ϕ2, g(g1(c, d), e))}
Then the extensions on S with respect to the property above are:
{S ∪ {(ϕ2, g1(c, d)), (ϕ2, c)}};
{S ∪ {(ϕ2, g1(c, d)), (ϕ2, d)}};
{S ∪ {(ϕ2, g1(c, d)), (ϕ2, c), (ϕ2, d)}};
{S ∪ {(ϕ2, e}};
{S ∪ {(ϕ2, g1(c, d)), (ϕ2, c), (ϕ2, e)}};
{S ∪ {(ϕ2, g1(c, d)), (ϕ2, d), (ϕ2, e)}};
{S ∪ {(ϕ2, g1(c, d)), (ϕ2, c), (ϕ2, d), (ϕ2, e)}}.
And there is at least one of these extensions is sound if the wFNDR S is
sound.

Lemma 1 Let S is a wFNDR such that there is one pair (ϕ, g(a1, ..., ak)) ∈
S, where g is any free symbol in F , and we make extensions in the same way
as in the proposition. Then there exists some extension which is sound.

Proof. For the first statement, the extensions are formal non-deducibility
relations: The extensions satisfy the properties (i),(ii),(iii),(iv) because the
set S is a wFNDR. And by the definition of the extensions, it is obviously to
see that they satisfy the property (v). To prove the second statement, first, we
prove the lemma above. The reason is that: if we assume that all of the exten-
sions are not sound. That means every pairs of closed frames and terms (ϕ, ai)

in each extensions satisfies, (ϕ 6|= ai) implies that there is a polynomial-time
adversary Ai whose advantage is P [φ̂, ê ←R [[ϕ, ai]]Aη ; ê′ ←R Ai(η, φ̂) :

ê′ =Aη ê] is non-negligible. We construct an adversary B who can deduce all
subterms ai with the advantage of B is non-negligible: Given the concrete
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frame φ̂ of ϕ, and η,B runsAi(η, φ̂), i = 1, ..., k and the output is a1, ..., ak(we
assume that the number of subterms which are names is no larger than some
polynomial function of security parameter η). Otherwise, the function g is
computable in polynomial-time algorithm, so in polynomial-time algorithm,
the adversary B can construct the term g(a1, ..., ak) with his advantage is
non-negligible. Contradiction, that means there exists some extensions which
is sound. If we apply this lemma to the set S consisting pairs of closed frames
and terms. These pairs have form (ϕ, g(T1, ..., Tk)). We can obtain what we
want to prove.
Now, we show that these extensions are formal non-deducibility relation.
By the generation of this extension, it is obviously to see that it satisfies the
properties (i), (ii), (iii), (iv) because the set S is a wFNDR. We have to show
that these extensions satisfy the property (v). For any pair (ϕ, g(T1, ..., Tk))

in each of these extensions, then there are some pairs (ϕ, Ti), i ∈ {1, ..., k}
with (ϕ, Ti) in this extension. That is what we want to prove.

2

These useful propositions following are also reserved for formal non-deducibility
relation.

Proposition 6 Deducibility relation 6` is a formal non-deducibility relation
6|= with respect to the equational theory E.

Proof. We will show that 6` satisfies the properties of a formal non-deducibility
relation. First, we show that these properties (i), (ii), (iii), (iv) are satisfied
by 6` (see the proof in the section of weak formal non-deducibility relation).
Only the property (iv) remain. Assume that ϕ 6` g(T1, ..., Tk), then there
exists some subterms Ti such that ϕ 6` Ti. We assume that there is not any
subterms such that ϕ 6` Ti, duce to the free symbols g in F is computable,
hence ϕ ` g(T1, ..., Tk). Contradiction.

2

2.2 Formal Indistinguishability Relation

As Gergei Bana, Payman Mohassel, and Till Stegers mention in [8], the
statically equivalent relation does not work well in some importance cases,
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and a more flexible notion is needed. They argue that an equivalence rela-
tion finer than static equivalence is necessary to fit a number of interesting
cases for which static equivalence is not suitable. We will call this type of
equivalence relation a formal indistinguishability relation. This equivalence
relation is defined as follows:

2.2.1 Definition

Definition 13 A formal indistinguishability relation with respect to an equa-
tional theory E is an equivalence relation ∼= on the set of closed frames such
that
(i) ϕ1

∼= ϕ2 if dom(ϕ1) = dom(ϕ2);
(ii) for any frame ϕ, if ϕ2 are closed frames such that var(ϕ) ⊆ dom(ϕi),

names(ϕ) ∩ bnames(ϕi) = φ and ϕ1
∼= ϕ2 then ϕϕ1

∼= ϕϕ2;
(iii) for any two frames ϕ′ = {xi = T ′i}i=1,...n and ϕ” = {xi = T”i}i=1,...n,
if T ′i =E T”i for all i, then ϕ′ ∼= ϕ”; moreover, ϕ′ 6≈E ϕ” implies ϕ′ 6∼= ϕ”;
(iv) for any renaming τ, τ(ϕ) ∼= ϕ.

Remark 2 Corresponding sections of equivalent frames are equivalent. That
is, for example, if ϕ1 = νñ.{xi = Ti}i=1,...,4

∼= ϕ2 = νñ.{xi = T ′i}i=1,...,4 then
{x2 = T2, x4 = T4} ∼= {x2 = T ′2, x4 = T ′4}. This follows from (ii) by setting
ϕ = νθ.{x2 = x2, x4 = x4}.
If ϕ1, ϕ2, ϕ

′
1, ϕ
′
2 are frames such that dom(ϕ1) ∩ dom(ϕ2) = φ, dom(ϕ′1) ∩

dom(ϕ′2) = φ, names(ϕ2) ∩ bnames(ϕ1) = φ, names(ϕ′2) ∩ bnames(ϕ′1) =

φ and ϕi ∼= ϕ′i, then {ϕ1|ϕ2} ∼= {ϕ′1|ϕ′2}. The reason is the following:
Choose a renaming τ such that τ(ϕ1) = ϕ1, τ(ϕ′1) = ϕ′1, τ(ϕ′2) = ϕ′2 and
names(τ(ϕ2)) ∩ bnames(ϕ1) = names(τ(ϕ2)) ∩ bnames(ϕ′1) = φ. This can
be done because we assumed that there are infinitely many names of each sort.
Using (iv) we see that {ϕ1|ϕ2} ∼= τ({ϕ1|ϕ2}) = {ϕ1|τ(ϕ2)}. If dom(ϕ1) =

dom(ϕ′1) = {x1, ..., xk}, then let ψ = {x1 = x1, ..., xk = xk|τ(ϕ2)}. Using
(ii), it follows that {ϕ1|τ(ϕ2)} = ψϕ1

∼= ψϕ′1 = {ϕ′1|τ(ϕ2)}. Since by (iv)
again τ(ϕ2) ∼= ϕ2 and ϕ2

∼= ϕ′2 by assumption, τ(ϕ2) ∼= ϕ′2 holds , and ap-
plying (ii) in a similar fashion as above, we obtain {ϕ′1|τ(ϕ2)} ∼= {ϕ′1|ϕ′2}.
Putting all these together, {ϕ1|ϕ2} ∼= {ϕ′1|ϕ′2}

28



2.2.2 Useful Propositions on FIR

The following useful proposition on FIR are introduced in [8].

Proposition 7 Static equivalence ≈E is a formal indistinguishability rela-
tion with respect to the equational theory E.

Proof. See the appendix.

Proposition 8 The intersection of an arbitrary number of formal indis-
tinguishability relations (with respect to the same equational theory E) is a
formal indistinguishability relation.

Proof. See the appendix

Proposition 9 Consider static equivalence as a subset Ẽ ⊆ Fc × Fc. If
S ⊆ Ẽ, then there is an unique smallest 〈S〉∼= ⊆ Ẽ is a formal indistin-
guishability relation with respect to the equivalent theory E. 〈S〉∼= can be
generated in the following way: Let

S′ :=


(ϕ′, ϕ”) ∈ Fc ×Fc|ϕ′ = ϕ{ϕ′

1|...|ϕ
′
n}, ϕ” = ϕ{ϕ”

1|...|ϕ”
n}

such that bnames(ϕ) = φ and for all i = 1, ..., n,

(ϕ′, ϕ”) ∈ S, or(ϕ”, ϕ′) ∈ S, orϕ” =E τi(ϕ′)for some renaming τi.

and 〈S〉∼= is the transitive closure of S’.

Proof. See the appendix.
The computational model of a cryptographic scheme is in a sense closer to
reality than its formal representation by being more detailed description.
Therefore the accuracy of a formal model can be characterized based on how
close it is to the computational model. More specifically, how formal and
computational indistinguishability relate to each other via the interpretation.
The most important concepts to describe this are given in the following
definition.

Definition 14 Let A be a computation algebra, and let ∼= be a formal in-
distinguishability relation on the set of frames, and let F ⊆ Fc. We say
that the computational algebra A is ∼=-sound on F if for every closed pair
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of frames ϕ1, ϕ2 ∈ F,ϕ1
∼= ϕ2 implies that [[ϕ1]]Aη ≈ [[ϕ2]]Aη . A is ∼=-

complete on F if for every closed pair of frames ϕ1, ϕ2 ∈ F,ϕ1 6∼= ϕ2 im-
plies that [[ϕ1]]Aη 6≈ [[ϕ2]]Aη . A is ∼=-faithful on F if for every closed pair
of frames ϕ1, ϕ2 ∈ F,ϕ1 6∼= ϕ2 implies that the statistical distance is not
negligible and there is a probabilistic polynomial-time adversary A such that
|AdvAη ([[ϕ1]]Aη , [[ϕ2]]Aη)−∆([[ϕ1]]Aη , [[ϕ2]]Aη)| is negligible. For all three no-
tions, we adopt the convention that if no such set F is mentioned, it is as-
sumed that F = Fc.

Proposition 10 Let A be a computational algebra that is =E-sound. Sup-
pose S ⊆ Ẽ is a binary relation on closed frames such that (ϕ,ψ) ∈ S implies
[[ϕ]]Aη ≈ [[ψ]]Aη . Then [[ϕ]]Aη ≈ [[ψ]]Aηwhenever ϕ ∼= ψ. That is, A is ∼=-
sound.

Proof. See the appendix.
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Chapter 3

Useful Propositions, Axioms
for Encryption primitives

We prove here some useful propositions of deducibility relation, non-
deducibility and static equivalence relation. These propositions allow us see
that non-deducibility and statically equivalent relations are formal non-deducibility
and formal indistinguishability relations, respectively. Moreover, assume that
we have a set of pairs of closed frames and terms such that each pairs in this
set satisfies ϕ 6` T then we apply these propositions to extend this set. These
useful propositions ensure that the result is a formal non-deducibility re-
lation (FNDR). In the similar way, assume that we have a set of pairs of
frames such that every pairs of frames satisfies ϕ1 ≈E ϕ2 then after applying
these useful propositions to extend this set. These useful propositions ensure
that the result is a formal indistinguishability relation (FIR). Finally, we in-
troduce some basic axioms for general encryption primitives and show that
these axioms are sound.

3.1 Useful Propositions

3.1.1 Useful Propositions on Deducibility Relation

Proposition 11 Let a closed frame and term such that ϕ ` T . For any
renaming τ, τ(ϕ) ` τ(T ).
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Proof. We have ϕ ` T , by the definition of the deduction concept, there
exists a term M such that: var(M) ⊆ dom(ϕ); fnames(M)∩ bnames(ϕ) =

φ; (M =E T )ϕ. Since τ(Mϕ) =E τ(T ); fnames(τ(M))∩ bnames(τ(ϕ)) = φ

and var(M) ⊆ dom(ϕ). So we can conclude that τ(ϕ) ` τ(T ).

2

Proposition 12 Let a closed frame and term such that ϕ ` T . For any
renaming closed term T ′ =E T, ϕ ` T ′.

Proof. We have ϕ ` T , by the definition of the deduction concept, there
exists a term M such that: var(M) ⊆ dom(ϕ); fnames(M)∩ bnames(ϕ) =

φ; (M =E T )ϕ. Since Mϕ =E T =E T
′; fnames(M)) ∩ bnames(ϕ) = φ and

var(M) ⊆ dom(ϕ). So we can conclude that ϕ ` T ′.

2

Proposition 13 Let two frames ϕ1 and ϕ2 such that ϕ1 =E ϕ2. For any
(closed) term T . If ϕ1 ` T then ϕ2 ` T .

Proof. We have ϕ1 ` T , by the definition of the deduction concept, there
exists a termM such that: var(M) ⊆ dom(ϕ1); fnames(M)∩bnames(ϕ1) =

φ; (M =E T )ϕ1 . Since ϕ1 =E ϕ2; fnames(M) ∩ bnames(ϕ2) = φ and
var(M) ⊆ dom(ϕ2). Therefore,(M =E T )ϕ1 implies (M =E T )ϕ2 . So we
can conclude that ϕ2 ` T.

2

Proposition 14 Let two frames ϕ and closed frame ϕ1 such that var(ϕ) ⊆
dom(ϕ1); bnames(ϕ1) ∩ names(ϕ) = φ. For any (closed) term T . If ϕ1 ` T
then ϕϕ1 ` T .

Proof. We have to show that if ϕ1 ` T then ϕϕ1 ` T . Since ϕ1 ` T , so
by the definition of deducibility relation, there exists a term M such that
var(M) ⊆ dom(ϕ1) and fnames(M)∩ bnames(ϕ1) = φ. And M(ϕ1) =E T .
Consider term Mϕ, we have fnames(Mϕ)∩ bnames(ϕ1) = (fnames(M)∪
names(ϕ))∩bnames(ϕ1) = φ; var(Mϕ) ⊆ var(ϕ) ⊆ dom(ϕ1).AndM(ϕϕ1) =

(Mϕ)ϕ1 =E T. So, ϕϕ1 ` T .
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2

Proposition 15 Let two frames ϕ1 and ϕ2. For any (closed) term T . If ϕ1 `
T ; dom(ϕ1)∩dom(ϕ2) = φ; bnames(ϕ1)∩names(ϕ2) = φ then {ϕ1|ϕ2} ` T .

Proof. LetM be a term such that var(M) ⊆ dom({ϕ1|ϕ2}); fnames(M)∩
(bnames(ϕ1) ∪ bnames(ϕ2) = φ, we will prove that (M =E T ){ϕ1|ϕ2}. We
have dom({ϕ1|ϕ2}) = dom(ϕ1) ∪ dom(ϕ2), implies var(M) ⊆ (dom(ϕ1) ∪
dom(ϕ2)) and dom(ϕ1) ∩ dom(ϕ2) = φ, so

M{ϕ1|ϕ2} = (Mϕ1)ϕ2

= (Mϕ2)ϕ1

= (M{xi = Ti})ϕ1

Let a term M1 = M{xi = Ti}. That means we replace all the variables xi of
the term M such that xi ∈ var(ϕ2). Because bnames(ϕ1)∩names(ϕ2) = φ,
so fnames(M1) = (fnames(M)∪names(ϕ2))∩ bnames(ϕ1) = φ. The term
M1 satisfies: var(M1) ⊆ dom(ϕ1); fnames(M1)∩bnames(ϕ1) = (fnames(M)∪
names(ϕ2)) ∩ bnames(ϕ1) = φ; M{ϕ1|ϕ2} =E T . And T is a closed term,
T{ϕ1|ϕ2} = T . That means M{ϕ1|ϕ2} = T{ϕ1|ϕ2}. We can conclude that
{ϕ1|ϕ2} ` T .

2

Proposition 16 Let two frames ϕ1 and ϕ2 such that dom(ϕ1)∩dom(ϕ2) =

φ and names(ϕ2)∩ bnames(ϕ1) = φ. For any (closed) term T . If {ϕ1|ϕ2} `
T ; then ϕ1 ` T or ϕ2 ` T .

Proof. There exists a termM such that: var(M) ⊆ (dom(ϕ1)∪dom(ϕ2));

fnames(M) ∩ (bnames(ϕ1) ∪ bnamse(ϕ2)) = φ; M{ϕ1|ϕ2} =E T . We con-
sider three cases following:
(i) var(M) ⊆ dom(ϕ1)

ConsiderM{ϕ1|ϕ2} =E (Mϕ1)ϕ2 =E Mϕ1 duce to dom(ϕ1)∩dom(ϕ2) = φ

and var(M) ⊆ dom(ϕ1) As the properties of the term M above, we have:
var(M) ⊆ dom(ϕ1); fnames(M) ∩ bnames(ϕ1) = φ; Mϕ1 =E T . That
means ϕ1 ` T .
(ii) var(M) ⊆ dom(ϕ2)
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In the similar way, we have M{ϕ1|ϕ2} =E (Mϕ2)ϕ1 =E Mϕ2 and the term
M satisfies:
var(M) ⊆ dom(ϕ2); fnames(M) ∩ bnames(ϕ2) = φ; Mϕ2 =E T . This im-
plies ϕ2 ` T .
(iii) dom(ϕi) ⊂ var(M) ⊆ (dom(ϕ1 ∪ dom(ϕ2))

M{ϕ1|ϕ2} =E T ↔ (M{xi = Ti})ϕ1 =E T . M{xi = Ti} means that we
replace all variables xi of the termM such that xi ∈ var(ϕ2) by the substitu-
tion of the frame ϕ2. If we choose M1 = M{xi = Ti},so var(M1) ⊆ dom(ϕ1)

and fnames(M1) ∩ bnames(ϕ1) = φ since fnames(M) ∩ bnames(ϕ1) = φ

and names(ϕ2) ∩ bnames(ϕ1) = φ. The term M1 satisfies:
var(M1) ⊆ dom(ϕ1); fnames(M1) ∩ bnames(ϕ1) = φ; M1ϕ1 =E T. This
implies ϕ1 ` T .

2

Proposition 17 Let a closed frame and term such that ϕ 6` T . For any
renaming τ, τ(ϕ) 6` τ(T ).

Proof. Duce to renaming is bijection so if we assume that τ(ϕ) ` τ(T ),
then apply the proposition 11, this implies ϕ ` T . Contradiction.

2

Proposition 18 Let a closed frame and term such that ϕ 6` T . For any
closed term T ′ =E T, ϕ 6` T ′.

Proof. We assume that ϕ ` T ′, by applying the proposition 12, this implies
ϕ ` T . Contradiction.

2

Proposition 19 Let two frames ϕ1 and ϕ2 such that ϕ1 =E ϕ2. For any
(closed) term T . If ϕ1 6` T then ϕ2 6` T .

Proof. We assume that ϕ2 ` T . By the definition of deduction, there exists
a term M such that:
fnames(M) ∩ bnames(ϕ2) = φ; var(M) ⊆ dom(ϕ2); (M =E T )ϕ2. Since
ϕ1 =E ϕ2. This implies that:
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var(M) ⊆ dom(ϕ1); fnames(M) ∩ bnames(ϕ1) = φ; (M =E T )ϕ1. That is
ϕ1 ` T . Contradiction, therefore,we have ϕ2 6` T

2

Proposition 20 Let two frames ϕ and closed frame ϕ1 such that var(ϕ) ⊆
dom(ϕ1); bnames(ϕ1) ∩ names(ϕ) = φ. For any (closed) term T . If ϕ1 6` T
then ϕϕ1 6` T .

Proof. We have to show that if ϕ1 6` T then ϕϕ1 6` T . Assume that ϕϕ1 `
T , so by the definition of deducibility relation, there exists a term M such
that var(M) ⊆ dom(ϕϕ1) and fnames(M)∩bnames(ϕϕ1) = fnames(M)∩
(bnames(ϕ)∪names(ϕ1)) = φ. This implies fnames(M)∩bnames(ϕ1) = φ.

AndM(ϕϕ1) =E T . Consider termMϕ, we have fnames(Mϕ)∩bnames(ϕ1) =

(fnames(M)∪names(ϕ))∩bnames(ϕ1) = φ; var(Mϕ) ⊆ var(ϕ) ⊆ dom(ϕ1).

And M(ϕϕ1) = (Mϕ)ϕ1 =E T. Therefore, ϕ1 ` T . Contradiction, so,
ϕϕ1 6` T .

2

Proposition 21 Let two frames ϕ1 and ϕ2 such that dom(ϕ1)∩dom(ϕ2) =

φ and names(ϕ2) ∩ bnames(ϕ1) = φ. For any (closed) term T . If ϕ1 6`
T ;ϕ2 6` T then {ϕ1|ϕ2} 6` T .

Proof. We assume that {ϕ1|ϕ2} ` T . As the proposition 16 above, we have
ϕ1 ` T or ϕ2 ` T . Contradiction, therefore, {ϕ1|ϕ2} 6` T .

2

Proposition 22 Let two frames ϕ1 and ϕ2. For any (closed) term T . If
ϕ1 6` T, ϕ2 6` T and there exists a frame ϕ3 such that ϕ2 =E ϕ3 with then
{ϕ1|ϕ2} 6` T .

Proof. This proposition is the lemma of proposition 13, proposition 21 and
the lemma following
Let four frames ϕ1, ϕ

′
1, ϕ2, ϕ

′
2. If ϕ1 =E ϕ

′
1, ϕ2 =E ϕ

′
2 then {ϕ1|ϕ2} =E

{ϕ′
1|ϕ

′
2}.

Apply the proposition 21 for these frames ϕ1 and ϕ3, the result is {ϕ1|ϕ3} 6`
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T . Then we apply the proposition 27 for these frames ϕ1, ϕ2 and ϕ3, we have
two frames {ϕ1|ϕ2} =E {ϕ1|ϕ3}. Finally, applying the proposition 19 for
two frames {ϕ1|ϕ2} and {ϕ1|ϕ3}, and the result is exactly what we had to
prove to see that {ϕ1|ϕ2} 6` T .

2

Proposition 23 Let two frames ϕ1 and ϕ2 with dom(ϕ1) ∩ dom(ϕ2) =

φ;names(ϕ1) ∩ names(ϕ2) = φ . For any (closed) term T . If {ϕ1|ϕ2} 6` T
then ϕ1 6` T and ϕ2 6` T .

Proof. We assume that ϕ1 ` T or ϕ2 ` T . By the proposition 15, we can
have {ϕ1|ϕ2} ` T . Contradiction, therefore, we can conclude that ϕ1 6` T
and ϕ2 6` T .

2

3.1.2 Useful Propositions on Equivalent Relation

Proposition 24 Static equivalence ≈E is a equivalent relation R ⊆ Fc×Fc
with respect to an equational theory E. That is ≈E satisfies three properties:
reflexity, symmetry, and transitivity.

Proof. We will prove that ≈E relation satisfies three properties above
(i) Reflexity
For any frame ϕ, with every two terms M and N such that var(M) ⊆
dom(ϕ), var(N) ⊆ dom(ϕ), fnames(M,N)∩bnames(ϕ) = φ. It is obviously
that (M =E N)ϕ is equivalent to (M =E N)ϕ. This implies ϕ ≈E ϕ.
(ii) Symmetry
For any two frames ϕ1 and ϕ2, such that ϕ1 ≈E ϕ2. Duce to ϕ1 ≈E ϕ2, so
with every two terms M, N,
var(M) ⊆ dom(ϕi), i = 1, 2; var(N) ⊆ dom(ϕi), i = 1, 2; fnames(M,N) ∩
(bnames(ϕ1 ∪ bnames(ϕ2)) = φ; dom(ϕ1) = dom(ϕ2); (M =E N)ϕ1 ↔
(M =E N)ϕ2. Therefore, with the property of the equivalent relation, for
every two termM, N, it satisfies (M =E N)ϕ2 ↔ (M =E N)ϕ1 or ϕ2 ≈E ϕ1.
(iii) Transitivity
Let ϕ1, ϕ2 and ϕ3 be three frames such that ϕ1 ≈E ϕ2 and ϕ2 ≈E ϕ3. We
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will prove that ϕ1 ≈E ϕ3. For every frames M, N be two frames such that:
var(M,N) ⊆ dom(ϕi), i = 1, 2, 3

fnames(M,N) ∩ (bnames(ϕ1) ∪ bnames(ϕ2) ∪ bnames(ϕ3)) = φ.
Since we have ϕ1 ≈E ϕ2 so (M =E N)ϕ1 is equivalent (M =E N)ϕ2 and
ϕ2 ≈E ϕ3 implies (M =E N)ϕ2 is equivalent (M =E N)ϕ3. This is obviously
to see that (M =E N)ϕ1 is equivalent (M =E N)ϕ3. And that is exactly
what we want to prove, that is ϕ1 ≈E ϕ3.

2

Proposition 25 Let τ is an any renaming function. For every frame ϕ,
then τ(ϕ) ≈E ϕ.

Proof. To prove this proposition, we construct another renaming τ ′ in the
following: On the bnames(ϕ), let τ ′ be equal τ , and on N (bnames(ϕ) ∪
τ(bnames(ϕ)), let τ ′ be the identity map. We will have to define τ ′ on the
domain τ(bnames(ϕ))\bnames(ϕ). Since τ is a sort-preserving bijection, the
number of elements in the domain τ(bnames(ϕ)) bnames(ϕ) is the same as
the number of elements in bnames(ϕ) τ(bnames(ϕ)) for each sort s. Both are
|bnames(ϕ)|− |bnames(ϕ)∩ τ(bnames(ϕ))|, which equals |τ(bnames(ϕ))|−
|bnames(ϕ)∩ τ(bnames(ϕ))|. So on the domain τ(bnames(ϕ)) \ bnames(ϕ)

choose τ ′ to be any bijection to the domain bnames(ϕ)\ τ(bnames(ϕ)). It is
then easy to see that τ ′ is a sort-preserving bijection on N , and that τ ′(ϕ) =

τ(ϕ) for the frame ϕ. Moreover, for any term M that shares no names with
ϕ and τ(ϕ), τ ′(M) = M , and therefore Mτ(ϕ) = Mτ ′(ϕ) = τ ′(Mϕ) holds.
Hence, for any two termsM and N such that fnames(M,N)∩(bnames(ϕ)∪
bnames(τ(ϕ))) = φ, Mτ(ϕ) =E Nτ(ϕ) if and only if τ ′(Mϕ) =E τ ′(Nϕ)

which happends. Since τ ′ is a bijection - if and only if Mϕ =E Nϕ, and
τ(ϕ)approxEϕ follows.

2

Proposition 26 Let two frames ϕ1 and ϕ2. And ϕ is a (closed) frame with
var(ϕ) ⊆ dom(ϕi) = φ, i = 1, 2 and names(ϕ) ∩ bnames(ϕi) = φ. And if
ϕ1 ≈E ϕ2 then ϕϕ1 ≈E ϕϕ2.
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Proof. Let M,N be terms whose variables are included in dom(ϕϕ1),
duce to var(ϕ) ⊆ dom(ϕi), i = 1, 2 so dom(ϕϕ1) = dom(ϕϕ2), that is
var(M,N) ⊆ dom(ϕϕ2). AndM,N have no names in common with ϕϕi, i =

1, 2. Then fnames(Mϕ) = fnames(M) ∪ names(ϕ), and fnames(M) ∪
names(ϕ) is disjoint from bnames(ϕi) by the assumption on M and condi-
tion of the proposition. Therefore, fnames(Mϕ) and bnames(ϕi) are disjoint
(and likewise for N).
If ϕ1 ≈E ϕ2 holds, then by the definition of static equivalence, (Mϕ)ϕ1 =E

(Nϕ)ϕ1 if and only if (Mϕ)ϕ2 =E (Nϕ)ϕ2. Therefore, M(ϕϕ1) =E N(ϕϕ1)

if and only if M(ϕϕ2) =E N(ϕϕ2), and that is exactly what we want to
prove to see that ϕϕ1 ≈E ϕϕ2.

2

Proposition 27 Let four frames ϕ1, ϕ
′
1, ϕ2 and ϕ

′
2 such that dom(ϕ1) ∩

dom(ϕ2) = φ, dom(ϕ
′
1) ∩ dom(ϕ

′
2) = φ, names(ϕ1) ∩ names(ϕ2) = φ and

names(ϕ
′
1) ∩ names(ϕ′

2) = φ. If ϕ1 ≈E ϕ
′
1 and ϕ2 ≈E ϕ

′
2 then {ϕ1|ϕ2} ≈E

{ϕ′
1|ϕ

′
2}.

Lemma 2 Let 3 frames ϕ,ϕ1, ϕ2 such that dom(ϕ)∩dom(ϕ1) = φ; dom(ϕ)∩
dom(ϕ2) = φ;names(ϕ) ∩ names(ϕ1) = φ;names(ϕ) ∩ names(ϕ2) = φ. If
ϕ1 ≈E ϕ2, then {ϕ|ϕ1} ≈E {ϕ|ϕ2}.

Proof. Choose a renaming τ such that τ(ϕ1) = ϕ1; τ(ϕ
′
1) = ϕ

′
1; τ(ϕ

′
2) =

ϕ
′
2; τ(ϕ2) and names(τ(ϕ2))∩names(ϕ1) = names(τ(ϕ2))∩names(ϕ′

1) = φ.
This can be done because we assumed that there are infinitely many names
of each sort.
Using the proposition 25, we see that {ϕ1|ϕ2} ≈E τ({ϕ1|ϕ2}) = {ϕ1|τ(ϕ2)}.
Duce to ϕ1 ≈E ϕ

′
1 so dom(ϕ1) = dom(ϕ

′
1) = {x1, ..., xk}, then let the frame

ψ = {x1 = x1, ..., xk = xk|τ(ϕ2)}. We see that var(ψ) ⊆ dom(ϕ1), dom(ϕ
′
1)

and names(ψ)∩ (names(ϕ1)∪names(ϕ′
1)) = names(τ(ϕ2))∩ (names(ϕ1)∪

names(ϕ
′
1) = φ,then using the proposition 26 for three frames ψ,ϕ1, ϕ

′
1, it

follows that {ϕ1|τ(ϕ2)} = ψϕ1 ≈E ψϕ
′
1 = {ϕ′

1|τ(ϕ2)}.
Since ϕ2 ≈E ϕ

′
2 and ϕ2 ≈E τ(ϕ2), therefore, τ(ϕ2) ≈E ϕ

′
2. Due to τ(ϕ2) ≈E

ϕ
′
2 so dom(ϕ2) = dom(ϕ

′
2) = {x1, ..., xt}, then let the frame ψ′ = {x1 =

x1, ..., xt = xt|ϕ
′
1}. It is easy to see that:

var(ψ′) ⊆ dom(τ(ϕ2)), dom(ϕ
′
2);names(ψ′)∩ (namesτ(ϕ2)∪names(ϕ′

2)) =
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names(ϕ
′
1) ∩ namesτ(ϕ2) ∪ names(ϕ′

2)) = φ

Then using the proposition 26 again for three frames ψ′, τ(ϕ2) and ϕ
′
2, it

results that {ϕ′
1|τ(ϕ2)} = ψ′τ(ϕ2) ≈E ψ′ϕ

′
2 = {ϕ′

1|ϕ
′
2}. Putting all these

together, {ϕ1|ϕ2} ≈E {ϕ
′
1|ϕ

′
2}.

2

3.2 Basic Axioms on Encryption Primitives

In this section,we will show basic axioms on encryption primitives such
that random assignment, xor function, concatenation function, hash func-
tion, and trapdoor one-way permutation function [11, 10, 9, 18], the proofs
are put in the appendix. These axioms present a general set of pairs of frames
or frames and closed terms whose frames and closed terms under an equiv-
alent theory E. And then, we show that these axioms are FNDR and FIR,
sound under the condition that the equivalent theory E is sound. Based on
these axioms and applying of the propositions and lemmas in the section
of formal indistinguishability and non-deducibility relations, we can verify
asymmetric encryption schemes automatically. We first establish an equiva-
lent theory E.
Consider the signature Σ = (S,F) consists of the set of sorts and the set of
free symbols:
S = {A,G,Hash, Img,Cipher,Key,Data}
F = {0, 1, 1G, 1A,+,−, ., ∗, exp,⊕, cons, head, tail, nil, h, f, g}.
To establish the equivalent theory E, we concentrate on abelian groups G
with exponents taken over a commutative ring A. Consider the following
equational theory to model a commutative group with exponentiation (as in
[6]). Let A and G be sorts, and let F contains the following function symbols:
∗ : G×G→ G − : A→ A

1G : G . : A×A→ A

+ : A×A→ A 1A : A

0 : A exp : G×A→ G

To simplify the notation, we write UV for exp(U, V ). And the formal model
consists of term algebras over these sets of sorts and function symbols and
equipped with the equational theory who is generated from the set of equa-
tions as follows:
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u+ v = v + u

u+ (v + w) = (u+ v) + w

u+ 0A = u

u+ (−u) = 0A
u.v = v.u

u.(v.w) = (u.v).w

u.1A = u

(u+ v).w = u.w + v.w
To model the exclusive or function. Let Data be a sort and we consider the
infix symbol in F ⊕ : Data ×Data → Data and two constants 0, 1 : Data.
And the equations following are equipped with the equational theory E:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) x⊕ y = y ⊕ x
x⊕ x = 0 x⊕ 0 = x

And the computational algebras Aη, η ≥ 0 :

- the concrete domain [[s]]Aη is the set of bit-string of length η, {0, 1}η with
the uniform distribution;
- ⊕ is interpreted by the usual XOR function over {0, 1}η;
- [[0]]Aη = 0η and [[1]]Aη = 1η

Then to model the concatenation function. Let Key,Cipher be sorts such
that Key,Cipher ≤S Data, and the following function symbols:
|| : Data×Data→ Data pairing constructor
head : Data→ Data head of a pair
tail : Data→ Data tail of a pair
nil : List0 empty Data
0, 1 : Data constants

The set of equations following are equipped with the equational theory E:
dec(enc(x, y), y) = x enc(nil, x) = nil

enc(dec(x, y), y) = x dec(nil, x) = nil

head(||(x, y)) = x tail(x) = nil

tail(||(x, y)) = y ||(head(x), tail(x)) = x
And the concrete meaning of sorts end function symbols is given by the
computational algebras A defined as follows:

– the carrier sets are [[Data]]Aη = {0, 1}k equipped with the uniform
distribution and the usual equational relation

– enc, dec are implemented by a cipher for data of the particular size and
keys of the size k
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– [[nil]]Aη is the empty bit-string, [[const]]Aη is the usual concatenation,
[[0]]Aη = 0k, [[1]]Aη = 1k, [[head]]Aη returns the first k digits of bit-
strings, whereas [[tail]]Aη returns the last k digits.

To model the hash and trapdoor one-way permutation function symbols. Let
Hash, Img be sorts such that Hash, Img ≤S Data. And the function sym-
bols following are in the set F :

h : Data→ Hash hash function
f : Data→ Img trapdoor one-way permutation
f : Data×Data→ Img partially trapdoor one-way permutation
g : Keys× Img → Data (partially) invert trapdoor one-way permutation

And the equations following are equipped with the equational theory E:

g(f(x)) = x g(f(x, y)) = x

And the concrete meaning of sorts end function symbols is given by the
computational algebras A defined as follows:

– g are implemented by a cipher for data of the particular size and keys
of the size k

– [[Hash]]Aη , [[Img]]Aη = {0, 1}k ≤S Data are equipped with the uni-
form distribution and usual equational relation.

– [[h]]Aη , [[f ]]Aη , [[g]]Aη are the usual hash, trapdoor one-way permuta-
tion and its invert.

Observe that we did not include the symbol for the invert hash function in
the language. The reason is that computing a from h(a) is not feasible for
any adversary. One the set of sorts is set, the set of function symbols and
the computational group scheme is set, the computational interpretation of
this signature is straightforward.

3.2.1 Random generation

We consider a random assignment like this νa, in π - calculus that means
creating a fresh name a. It is that it declares a new unique name a, distinct
from all external names, for use in the process. Based on the propositions
above, we propose a set of specific axioms following which are sound:
(RD1) νa.θ 6|= a.
(RE1) νa.{x = a} ∼= νr.{x = r}.
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3.2.2 Xor function

The following basic axioms are sound for xor function:
(XD1) νñ.σ 6|= T , then νñ.νa.{σ|x = a ⊕ T} 6|= T , such that a 6∈ (ñ ∪
fnames(T )).
(XE1) νñ.a.{σ|x = a⊕T} ∼= νñ.r.{σ|x = r}, such that a 6∈ (ñ∪fnames(T )).

3.2.3 Concatenation function

The following basic axioms are served for concatenation function and
sound:
(CD1) ϕ 6|= T , then ϕ 6|= T ‖ T ′, ∀T ′ ∈ Tc.
(CE1) νa.b.{x = a ‖ b} ∼= νr.{x = r}.

3.2.4 Hash function

The following basic axioms are of hash function are sound:
(HD1) ϕ 6|= T , {ϕ|x = h(T )} 6|= T such that h(T ) does not appear in ϕ.
(HE1) ϕ 6|= T , {ϕ|x = h(T )} ∼= {ϕ|νr.{x = r}} such that h(T ) does not
appear in ϕ.

3.2.5 One-way function

The following basic axioms are sound and served for one-way permutation
function:
(OD1) νa.{x = f(a)} 6|= a.
(OE1) νa.{x = f(a)} ∼= νr.{x = r}.
If f is a partially one-way permutation function, then these basic axioms are
sound:
(OD1’) νa.b.{x = f(a||b)} 6|= a.
(OE1’) νa.b.{x = f(a||b)} ∼= νr.{x = r}.
The following rules are consequent:
(OD2) νñ.σ 6|= T , then νñ.a.{σ|x = f(a||h(T ))} 6|= a.
(OE2) νñ.σ 6|= T , then νñ.a.{σ|x = f(a||h(T ))} ∼= νñ.νr.{σ|x = r}.
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Chapter 4

Applications

Now, we apply the framework that developed in chapter 2 and the ax-
ioms for encryption primitives in chapter 3 to prove automatically the se-
cure properties (indistinguishability chosen plaintext attack - IND-CPA)
of some asymmetric encryption schemes. To do this we propose the gen-
eral framework as follows: Let two sets Sd, Se, where the first one con-
sists pairs of closed frames and terms such that every pair (ϕ, T ) such that
fnames(T ) ⊆ names(ϕ), is sound that means it implies for any probabilis-
tic polynomial-time adversary B, its advantage P [φ̂, ê ←R [[ϕ, T ]]Aη ; ê′ ←R

B(η, φ̂) : ê′ =Aη ê] is negligible. And the second one consists pairs of closed
frames such that every pair (ϕ1, ϕ2) such that dom(ϕ1) = dom(ϕ2), is sound
that means it implies for any probabilistic polynomial-time adversary B, its
probability that distinguishes two frames is negligible. To create these sets
we consider these axioms for encryption primitive. And then, we apply the
propositions in chapter 2 to generate a formal non-deducibility relation and
a formal indistinguishability relation to show the secure properties of an
asymmetric encryption scheme (see the figure following). In these schemes,
we consider these function H and G as hash functions, both assumed to be
ideal random functions [14], and the function f as trapdoor one-way permu-
tation function or partially trapdoor one-way permutation function, where
k is a security parameter
H : {0, 1}k → Y ;G : X → {0, 1}k
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Figure 4.1: The General Framework for Verification

4.1 Bellare and Rogaway’93

[12] Let us consider such a trapdoor one-way permutation function f :

X → Z and we denote g its invert:
Encryption of m ∈M = {0, 1}k0 → (a||b||c), r ∈ X is randomly chosen.
a = f(r);

b = m⊕G(r);

c = H(m ‖ r), (a||b||c)→ is the ciphertext.
Decryption of (a||b||c), given a ∈ Z; b ∈ {0, 1}k; c ∈ Y , compute:
r = g(a);

m = b⊕G(r).
If c = H(m||r) thenm is the plaintext, otherwise ’Reject’: invalid ciphertext.
First, we can represent the output of this encryption scheme as output =
f(r)||m⊕G(r)||H(m ‖ r) as the frame following:
ϕ = νr.{xa = f(r), xb = m⊕G(r), xc = H(m ‖ r)}
Apply the basic axioms on the encryption primitives in chapter 3, we have
this set of pairs of closed frames and terms such that every pair (ϕ,M)
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implies that every probabilistic polynomial-time adversary B with the ad-
vantage: P [φ̂, ê←R [[ϕ,M ]]Aη ; ê′ ← B(η, φ̂) : ê′ =Aη ê] is negligible.
Sd = {
(νr.{xa = f(r)}, r);
(νr.{xa = f(r)},m||r);
(νr.{xa = f(r), xb = G(r)}, r);
(νr.{xa = f(r), xb = G(r)},m||r);
(νr.{xa = f(r), xc = H(m||r)},m||r)}.
Apply the generation of a formal non-deducibility relation-FNDR in the pre-
vious chapter, we have the pairs of closed frames and terms following are in
〈Sd〉 6|=:
(νr.{xa = f(r), xb = m⊕G(r)},m||r);
(by (ϕϕ1,m||r);
ϕ = νr.{xa = xa, xb = m⊕ xb},
(ϕ1 = νr.{xa = f(r), xb = G(r)},m||r) ∈ Sd)
(νr.r2.{xa = f(r), xb = r2},m||r);
(by (ϕϕ1,m||r);
ϕ = νr2.{xa = xa, xb = r2}, (ϕ1 = νr.{xa = f(r)},m||r) ∈ Sd)
(νr.r3.{xa = f(r), xc = r3}, r)
(by (ϕϕ1,m||r);
ϕ = νr3.{xa = xa, xc = r3}, (ϕ1 = νr.{xa = f(r)},m||r) ∈ Sd)

Form the pairs in 〈Sd〉 6|= and by applying the basic axioms on encryption
primitives, we have the set Se such that every pairs of closed frames (ϕ1, ϕ2)

implies that every probabilistic polynomial-time adversary B with the ad-
vantage: P [φ̂, ê←R [[ϕ1]]Aη : B(η, φ̂) = 1]−P [φ̂, ê←R [[ϕ2]]Aη : B(η, φ̂) = 1]

is negligible.:
Se = {
(νr.{xa = f(r)}, νr1.{xa = r1});
(νr.{xa = f(r), xb = G(r)},
νr.r2.{xa = f(r), xb = r2});
(νr.{xa = f(r), xc = H(m||r)},
νr.r3.{xa = f(r), xc = r3});
(νr.{xa = f(r), xb = m⊕G(r), xc = H(m||r)},
νr.r3.{xa = f(r), xb = m⊕G(r), xc = r3});
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(νr.r2.{xa = f(r), xb = r2, xc = H(m||r)},
νr.r2.r3.{xa = f(r), xb = r2, xc = r3});
(νr.r2.r3.{xa = f(r), xb = m⊕ r2, xc = r3},
νr.r2.r3.{xa = f(r), xb = r2, xc = r3})}.
Apply the generation of a formal indistinguishability relation-FIR in the pre-
vious chapter, we have the pairs of closed frames and terms following are in
〈Se〉∼=:
(νr.{xa = f(r), xb = m⊕G(r)}, νr.r2.{xa = f(r), xb = m⊕ r2});
(by (ϕ{ϕ′1|ϕ′2}, ϕ{ϕ”1|ϕ”2});
ϕ = {xa = xa, xb = x′b ⊕ xb, xc = xc};
(ϕ′1 = νr.{xa = f(r), xb = G(r)},
ϕ”1 = νr.r2.{xa = f(r), xb = r2}) ∈ Se;
(ϕ′2 = {x′b = m} =E τ({x′b = m}) = ϕ”2) for the identified renaming)

(νr.r3.{xa = f(r), xb = m⊕G(r), xc = r3},
νr.r2.r3.{xa = f(r), xb = m⊕ r2, xc = r3});
(by (ϕ{ϕ′1|ϕ′2}, ϕ{ϕ”1|ϕ”2});
ϕ = {xa = xa, xb = x′b ⊕ xb, xc = xc},
(ϕ′1 = νr.{xa = f(r), xb = G(r)},
ϕ”1 = νr.r2.{xa = f(r), xb = r2}) ∈ Se,
(ϕ′2 = νr3.{x′b = m,xc = r3} =E τ(νr3.{x′b = m,xc = r3}) = ϕ”2)

for the identified renaming)

(νr.{xa = f(r), xb = m⊕G(r), xc = H(m||r)},
νr.r2.r3.{xa = f(r), xb = r2, xc = r3});
(the transitive property)

(νr.r2.r3.{xa = f(r), xb = r2, xc = r3},
νr1.r2.r3.{xa = r1, xb = r2, xc = r3};
(by (ϕ{ϕ′1|ϕ′2}, ϕ{ϕ”′1|ϕ”′2});
ϕ = {xa = xa, xb = xb, xc = xc},
(ϕ′1 = νr.{xa = f(r)}, ϕ”1 = νr1.{xa = r1}) ∈ Se,
(ϕ′2 = νr2.r3.{xb = r2, xc = r3} =E ϕ”2 = τ(νr2.r3.{xb = r2, xc = r3}))
(for the identified renaming)
(νr.{xa = f(r), xb = m⊕G(r), xc = H(m ‖ r)},
νr1.r2.r3.{xa = r1, xb = r2, xc = r3})}.
(the transitive property)
That means this encryption schemes is semantic security (IND-CPA) or an
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adversary can not distinguish the frame ϕ and the frame with random value.

4.2 REACT

[13] Let us consider such a partially trapdoor one-way permutation func-
tion f : X ×X → Z and we denote g its partial invert:
Encryption of m ∈M = {0, 1}k0 → (a||b||c).
R ∈ X, r ∈ X are randomly chosen.
a = f(R||r);
b = m⊕G(R);

c = H(R ‖ m ‖ f(R||r) ‖ (m⊕G(R))), (a||b||c)→ is the ciphertext.
Decryption of (a||b||c), given a ∈ Z; b ∈ {0, 1}k; c ∈ Y , compute:
R = g(a);

m = b⊕G(R).
If c = H(R ‖ m ‖ f(R||r) ‖ (m⊕G(R))) then m is the plaintext, otherwise
’Reject’: invalid ciphertext.
First, we can represent the output of this encryption scheme as output =
f(R||r)||m ⊕G(R)||H(R ‖ m ‖ f(R||r) ‖ (m ⊕G(R))) as the frame follow-
ing:
ϕ = νR.r.{xa = f(R||r), xb = m ⊕ G(R), xc = H(R ‖ m ‖ f(R||r) ‖
(m⊕G(R)))}
Apply the basic axioms on the encryption primitives in chapter 3, we have
this set of pairs of closed frames and terms such that every pair (ϕ,M)

implies that every probabilistic polynomial-time adversary B with the ad-
vantage: P [φ̂, ê←R [[ϕ,M ]]Aη ; ê′ ← B(η, φ̂) : ê′ =Aη ê] is negligible.
Sd = {
(νR.r.{xa = f(R||r)}, R);

(νR.r.{xa = f(R||r)}, R||m||f(R||r)||(m⊕G(R)));

(νR.r.{xa = f(R||r), xb = G(R)}, R);

(νR.r.{xa = f(R||r), xb = G(R)}, R||m||f(R||r)||(m⊕G(R)));

(νR.r.{xa = f(R||r), xc = H(R ‖ m ‖ f(R||r) ‖ (m⊕G(R)))},
R||m||f(R||r)||(m⊕G(R)))}.
Apply the generation of a formal non-deducibility relation-FNDR in the pre-
vious chapter, we have the pairs of closed frames and terms following are in
〈Sd〉 6|=:
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(νR.r.{xa = f(R||r), xb = m⊕G(R)}, R||m||f(R||r)||(m⊕G(R)));

(by (ϕϕ1, R||m||f(R||r)||(m⊕G(R)));

ϕ = νr.{xa = xa, xb = m⊕ xb},
(ϕ1 = νr.{xa = f(R||r), xb = G(R)}, R||m||f(R||r)||(m⊕G(R))) ∈ Sd)
(νR.r.r2.{xa = f(R||r), xb = r2}, R||m||f(R||r)||(m⊕G(R)));

(by (ϕϕ1, R||m||f(R||r)||(m⊕G(R)));

ϕ = νr2.{xa = xa, xb = r2},
(ϕ1 = νr.{xa = f(R||r)}, R||m||f(R||r)||(m⊕G(R))) ∈ Sd)
(νR.r.r3.{xa = f(R||r), xc = r3}, R).

(by (ϕϕ1, R);

ϕ = νr3.{xa = xa, xc = r3}
(ϕ1 = νr.{xa = f(R||r)}, R) ∈ Sd)

Form the pairs in 〈Sd〉 6|= and by applying the basic axioms on encryption
primitives, we have the set Se such that every pairs of closed frames (ϕ1, ϕ2)

implies that every probabilistic polynomial-time adversary B with the ad-
vantage: P [φ̂, ê←R [[ϕ1]]Aη : B(η, φ̂) = 1]−P [φ̂, ê←R [[ϕ2]]Aη : B(η, φ̂) = 1]

is negligible:
Se = {
(νR.r.{xa = f(R||r)}, νr1.{xa = r1});
(νR.r.{xa = f(R||r), xb = G(R)},
νR.r.r2.{xa = f(R||r), xb = r2});
(νR.r.{xa = f(R||r), xc = H(R ‖ m ‖ f(R||r) ‖ (m⊕G(R)))},
νR.r.r3.{xa = f(R||r), xc = r3});
(νR.r.r2.{xa = f(R||r), xb = r2, xc = H(R ‖ m ‖ f(R||r) ‖ (m⊕G(R)))},
νR.r.r2.r3.{xa = f(R||r), xb = r2, xc = r3});
(νR.r.{xa = f(R||r), xb = m ⊕ G(R), xc = H(R ‖ m ‖ f(R||r) ‖ (m ⊕
G(R)))},
νR.r.r3.{xa = f(R||r), xb = m⊕G(R), xc = r3})(νR.r.r2.r3.{xa = f(R||r), xb =

m⊕ r2, xc = r3},
νR.r.r2.r3.{xa = f(R||r), xb = r2, xc = r3})}.
Apply the generation of a formal indistinguishability relation-FIR in the pre-
vious chapter, we have the pairs of closed frames and terms following are in
〈Se〉∼=:
(νR.r.{xa = f(R||r), xb = m⊕G(R)}, νR.r.r2.{xa = f(R||r), xb = m⊕r2});
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(by (ϕ{ϕ′1|ϕ′2}, ϕ{ϕ”1|ϕ”2});
ϕ = {xa = xa, xb = x′b ⊕ xb, xc = xc};
(ϕ′1 = νR.r.{xa = f(R||r), xb = G(R)},
ϕ”1 = νR.r.r2.{xa = f(R||r), xb = r2}) ∈ Se;
(ϕ′2 = {x′b = m} =E τ({x′b = m}) = ϕ”2) for the identified renaming)

(νR.r.r3.{xa = f(R||r), xb = m⊕G(R), xc = r3},
νR.r.r2.r3.{xa = f(R||r), xb = m⊕ r2, xc = r3});
(by (ϕ{ϕ′1|ϕ′2}, ϕ{ϕ”1|ϕ”2});
ϕ = {xa = xa, xb = x′b ⊕ xb, xc = xc},
(ϕ′1 = νR.r.{xa = f(R||r), xb = G(R)},
ϕ”1 = νR.r.r2.{xa = f(R||r), xb = r2}) ∈ Se,
(ϕ′2 = νr3.{x′b = m,xc = r3} =E τ(νr3.{x′b = m,xc = r3}) = ϕ”2)

for the identified renaming)

(νR.r.{xa = f(R||r), xb = m ⊕ G(R), xc = H(R ‖ m ‖ f(R||r) ‖ (m ⊕
G(R)))},
νR.r.r2.r3.{xa = f(R||r), xb = r2, xc = r3});
(the transitive property)
(νR.r.r2.r3.{xa = f(R||r), xb = r2, xc = r3},
νr1.r2.r3.{xa = r1, xb = r2, xc = r3};
(by (ϕ{ϕ′1|ϕ′2}, ϕ{ϕ”′1|ϕ”′2});
ϕ = {xa = xa, xb = xb, xc = xc},
(ϕ′1 = νR.r.{xa = f(R||r)}, ϕ”1 = νr1.{xa = r1}) ∈ Se,
(ϕ′2 = νr2.r3.{xb = r2, xc = r3} =E ϕ”2 = τ(νr2.r3.{xb = r2, xc = r3}))
for the identified renaming)

(νR.r.{xa = f(R||r), xb = m ⊕ G(R), xc = H(R ‖ m ‖ f(R||r) ‖ (m ⊕
G(R)))},
νr1.r2.r3.{xa = r1, xb = r2, xc = r3})}.
(the transitive property)
That means this encryption schemes is semantic security (IND-CPA) or an
adversary can not distinguish the frame ϕ and the frame with random value.

4.3 Pointcheval’s Transformer

[9] Let us consider such a partially trapdoor one-way permutation func-
tion f : X × Y → Z and we denote g its invert:
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Encryption of m ∈ M = {0, 1}k0 → (a||b), r ∈ X, s ∈ {0, 1}k0 are randomly
chosen.
a = f(r||H(m||s));
b = (m||s)⊕G(r), (a||b)→ is the ciphertext.
Decryption of (a||b), given a ∈ Z; b ∈ {0, 1}k, compute:
r = g(a);

M = b⊕G(r).
If a = f(r||H(M) then m = [M ]k0 is the plaintext, otherwise ’Reject’: in-
valid ciphertext.
First, we can represent the output of this encryption scheme as output =
f(r||H(m||s))||((m||s)⊕G(r)) as the frame following:
ϕ = νr.s.{xa = f(r||H(m||s)), xb = ((m||s)⊕G(r))}
Apply the basic axioms on the encryption primitives in chapter 3, we have
this set of pairs of closed frames and terms such that every pair (ϕ,M)

implies that every probabilistic polynomial-time adversary B with the ad-
vantage: P [φ̂, ê←R [[ϕ,M ]]Aη ; ê′ ← B(η, φ̂) : ê′ =Aη ê] is negligible.
Sd = {
(νr.s.{xa = f(r||H(m||s))}, r);
(νr.s.{xa = f(r||H(m||s)), xb = G(r)}, r)};
(νs.{xa = H(m||s)},m||s).
Apply the generation of a formal non-deducibility relation-FNDR in the pre-
vious chapter, we have the pairs of closed frames and terms following are in
〈Sd〉 6|=:
(νs.{xa = f(r||H(m||s))},m||s)
(by (ϕϕ1,m||s);
ϕ = {xa = f(r||xa)}, (ϕ1 = νs.{xa = H(m||s)},m||s) ∈ Sd).
Form the pairs in 〈Sd〉 6|= and by applying the basic axioms on encryption
primitives, we have the set Se such that every pairs of closed frames (ϕ1, ϕ2)

implies that every probabilistic polynomial-time adversary B with the ad-
vantage: P [φ̂, ê←R [[ϕ1]]Aη : B(η, φ̂) = 1]−P [φ̂, ê←R [[ϕ2]]Aη : B(η, φ̂) = 1]

is negligible:
Se = {
(νr.{xb = G(r)}, νr2.{xb = r2});
(νr.s.{xa = f(r||H(m||s))}, νr1.{xa = r1});
(νr.s.{xa = f(r||H(m||s)), xb = G(r)}, νr.s.r2.{xa = f(r||H(m||s)), xb =
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r2});
(νr.s.{xa = f(r||H(m||s)), xb = (m||s)⊕G(r)}, νr.s.r2.{xa = f(r||H(m||s)), xb =

r2})}.
Apply the generation of a formal indistinguishability relation-FIR in the pre-
vious chapter, we have the pairs of closed frames and terms following are in
〈Se〉∼=:
(νr.s.r2.{xa = f(r||H(m||s)), xb = r2}, νr1.r2.{xa = r1, xb = r2})
(by (ϕ{ϕ′1|ϕ′2}, ϕ{ϕ”1|ϕ”2});
ϕ = {xa = xa, xb = xb},
(ϕ′1 = νr.s.{xa = f(r||H(m||s))}, ϕ”1 = νr1.{xa = r1}) ∈ Se
(ϕ′2 = νr2, {xb = r2} =E τ(νr2, {xb = r2}) = ϕ”2)

for the identified renaming τ That means this encryption schemes is seman-
tic security (IND-CPA) or an adversary can not distinguish the frame ϕ and
the frame with random value.
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Conclusions and Future Work

In this thesis we developed a general framework for verifying the prop-
erty security of an asymmetric encryption scheme. These are the result on
abstract models with equational theories. We also define a new formal non-
deducibility relation - FNDR beside the formal indistinguishability relation -
FIR. Then we define the soundness and faithfulness of cryptographic imple-
mentations with respect to abstract models. This is the approach to bridge
two views of cryptography: formal and computational. These definitions al-
low us to ensure that a term is not deducible in an abstract model from
a frame implies that the part of information is also can not be deduced
from the ciphertext in computational model. Also two frames are not dis-
tinguishable in an abstract model implies that these they can not be dis-
tinguished in computational model. Finally, to generate the general frame-
work, we propose the basic axioms on encryption primitives and the useful
propositions to generate a FNDR and FIR from a set of pairs of closed
frames and term a set of pairs of closed frames, respectively. We also pro-
pose the propositions to guarantee soundness property of a FNDR and a FIR.

A direction for further work is to study the other basic axioms on encryp-
tion primitives. Also include the probabilistic encryptions, for example how
to find basic axioms to represent the polynomials multiplication operation.
Study the concrete security and how to automate this method. Another di-
rection is to extend the capability of the general framework for verifying more
property security of an asymmetric encryption like IND-CCA1, IND-CCA2,
NM-CCA1, NM-CCA2 not only the property security IND-CPA.
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Appendix

Proposition 7. Static equivalence ≈E is a formal indistinguishability re-
lation with respect to the equational theory E.

Proof. Items (i) and (iii) are trivially satisfied by ≈E . Consider frames
ϕ,ϕ1, ϕ2 as in (ii). Let M,N be terms whose variables are included in
dom(ϕϕ1) = dom(ϕϕ2) = dom(ϕ) and that have no names in common
with ϕϕi, i = 1, 2. Then fnames(Mϕ) = fnames(M) ∪ names(ϕ), and
fnames(M) ∪ names(ϕ) is disjoint from names(ϕi) by the assumption on
M and condition (ii). Therefore fnames(Mϕ) and bnames(ϕi) are disjoint
(and likewise for N). If ϕ1 ≈E ϕ2 holds, then by the definition of static equiv-
alence, (Mϕ)ϕ1 =E (Nϕ)ϕ1 if and only if (Mϕ)ϕ2 =E (Nϕ)ϕ2. Therefore,
M(ϕϕ1) =E N(ϕϕ1) if and only if M(ϕϕ2) =E N(ϕϕ2), and that is exactly
what we had to prove.
To see (iv), we construct another renaming τ ′ in the following: On the
bnames(ϕ), let τ ′ be equal τ , and on N (bnames(ϕ)∪τ(bnames(ϕ)), let τ ′ be
the identity map. We will have to define τ ′ on the domain τ(bnames(ϕ)) \
bnames(ϕ). Since τ is a sort-preserving bijection, the number of elements
in the domain τ(bnames(ϕ)) bnames(ϕ) is the same as the number of ele-
ments in bnames(ϕ) τ(bnames(ϕ)) for each sort s. Both are |bnames(ϕ)| −
|bnames(ϕ) ∩ τ(bnames(ϕ))|, which equals |τ(bnames(ϕ))| − |bnames(ϕ) ∩
τ(bnames(ϕ))|. So on the domain τ(bnames(ϕ)) \ bnames(ϕ) choose τ ′ to
be any bijection to the domain bnames(ϕ) \ τ(bnames(ϕ)). It is then easy
to see that τ ′ is a sort-preserving bijection on N , and that τ ′(ϕ) = τ(ϕ)

for the frame ϕ. Moreover, for any term M that shares no names with ϕ

and τ(ϕ), τ ′(M) = M , and therefore Mτ(ϕ) = Mτ ′(ϕ) = τ ′(Mϕ) holds.
Hence, for any two termsM and N such that fnames(M,N)∩(bnames(ϕ)∪
bnames(τ(ϕ))) = φ, Mτ(ϕ) =E Nτ(ϕ) if and only if τ ′(Mϕ) =E τ ′(Nϕ)
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which happends. Since τ ′ is a bijection - if and only if Mϕ =E Nϕ, and
τ(ϕ) ≈E ϕ follows.

2

Proposition 8. The intersection of an arbitrary number of formal indis-
tinguishability relations (with respect to the same equational theory E) is a
formal indistinguishability relation.

Proof. Let (∼=i)i∈I , where I is some indexing set, be a sequence of weak
formal indistinguishability relations with respect to the same equational the-
ory E, and let ∼= be their intersection. Clearly, ∼= is equivalence relation and
satisfies the properties (i),(iii). We will show that ∼= also satisfies the proper-
ties (ii), (iv). Let ϕ,ϕ1, ϕ2 be as in (ii). Because (ϕϕ1) ∼=i ϕϕ2 for all i ∈ I,
hence ϕϕ1

∼= ϕϕ2. Likewise, since every ∼=i is preserved by the renaming of
variables, ∼= is preserved also. Therefore (ii),(iv) are also satisfied by ∼=.

2

Proposition 9. Consider static equivalence as a subset Ẽ ⊆ Fc × Fc. If
S ⊆ Ẽ, then there is an unique smallest 〈S〉∼= ⊆ Ẽ is a formal indistinguisha-
bility relation with respect to the equivalent theory E. 〈S〉∼= can be generated
in the following way: Let

S′ :=


(ϕ′, ϕ”) ∈ Fc ×Fc|ϕ′ = ϕ{ϕ′

1|...|ϕ
′
n}, ϕ” = ϕ{ϕ”

1|...|ϕ”
n}

such that bnames(ϕ) = φ and for all i = 1, ..., n,

(ϕ′, ϕ”) ∈ S, or(ϕ”, ϕ′) ∈ S, orϕ” =E τi(ϕ′)for some renaming τi.

and 〈S〉∼= is the transitive closure of S’.

Proof. We see that the existence of the smallest subset is clear. Then to
prove the statement about how to construct 〈S〉∼=, consider the transitive
closure Ŝ of S′.It is clear from the definition of S′ that Ŝ is symmetric,
reflexive and transitive, hence an equivalence relation. Also clear that S, S′

in Ŝ. Therefore, we only need to show that Ŝ is a formal indistinguishability
relation.
By the generation of Ŝ, we can see that it satisfies the properties (i),(iii)
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and (iv) of a formal indistinguishability relation. So we have to show that it
will satisfy the property (ii). Let ϕ be as in (ii). Suppose that (ϕ1, ϕ2) ∈ Ŝ,
so there are frames ψ1, ..., ψn such that ϕ1 = ψ1 and ϕ2 = ψn, and the
pair (ψi, ψi+1, i = 2, ..., n, are all in S′. Without loss of generality, we can
assume that names(ϕ)∩ bnames(ψi) = φ, because otherwise the names can
be remove away via renaming, the result pairs of frames will still be in S′.
If we can show that (ϕψi, ϕψi+1) ∈ S′, then the transitivity ensures that
(ϕϕ1, ϕϕ2) ∈ Ŝ. Let us fix the value i. Since (ψi, ψi+1) ∈ S′ so the frame ψi
has form ψi = ψ{ψ′1|...|ψ′m} and ψi+1 = ψ{ψ”′1|...|ψ”′m} such that for all j =

1, ...,m, (ψ′j , ψ”′j) ∈ S, or (ψ”′j , ψ
′
j) ∈ S or ψ”′j = τj(ψ′j) for some renaming

τj and names(ψ) = φ. If [names({ψ′1|...|ψ′m})\names(ψi)]∩names(ϕ) 6= φ,
then replace those names with fresh ones in {ψ′1|...|ψ′m} this can be done
because they don’t show up in ψ. Similarly for ψi+1. Let a1, ..., al be the
names occurring in ϕ, and let y1, ..., yl be the fresh variables. For 1 ≤ k ≥ l,
replace every occurrence of ak in ϕ by the variable yk, obtaining a frame ζ
such that names(ζ) = φ and (ϕψi = (ζψ{ψ′1|...|ψ′m|y1 = a1|...|yl = al} and
(ϕψi+1 = (ζψ{ψ”′1|...|ψ”′m|y1 = a1|...|yl = al}. By assumption, names(ψ) =

φ, so names(ζψ) = φ, and therefore, (ϕψi, ϕψi+1) ∈ S′.

2

Proposition 10. Let A be a computational algebra that is =E-sound. Sup-
pose S ⊆ Ẽ is a binary relation on closed frames such that (ϕ,ψ) ∈ S implies
[[ϕ]]Aη ≈ [[ψ]]Aη . Then [[ϕ]]Aη ≈ [[ψ]]Aηwhenever ϕ ∼= ψ. That is, A is ∼=-
sound.

Proof. As a consequence of proposition above, it is sufficient to verify that
those production rules preserve the computational indistinguishability of the
frames. For the reflexivity, transitivity, and symmetry, this is implied by the
fact that computational indistinguishability is an equivalence relation. By
the definition of the interpretation of a frame, it is also clear that if ψ is any
frame and τ is a renaming, then [[ψ]]Aη ≈ [[τ(ψ)]]Aη .
We will show that for any frame ϕ1, ϕ2, ϕ are as in proposition above, then
[[ϕ1]]Aη ≈ [[ϕ2]]Aη implies [[ϕϕ1]]Aη ≈ [[ϕϕ2]]Aη . Suppose that there is a
probabilistic polynomial-time adversary A whose advantage:
|P [A(η, [[ϕϕ1]]Aη) = 1] − P [A(η, [[ϕϕ2]]Aη) = 1]| is non-negligible. This
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gives an adversary B that distinguishes ϕ1, ϕ2 with non-negligible advantage.
Given the concrete frame ψ̂ are the sampled elements of [[ϕ1]]Aη or [[ϕ2]]Aη .
The adversary B simply interprets the frame ϕ using the values specified by
ψ̂ for the variables occurring in ϕ. All these variables are assigned a unique
values if ψ̂ is sampled from [[ϕi]]Aη since var(ϕ) ⊆ dom(ϕi).B constructs a
concrete frame σ̂i and runs A(σ̂i). Then the output is A′s output. There-
fore, the advantage of B equals the advantage of A, which is non-negligible
because the distribution of σ̂i is exactly [[ϕϕi]]Aη . In addition, B runs in
probabilistic polynomial-time since the size of encoding of ϕ is constant in
η, so the concrete frame σ̂i can computed in probabilistic polynomial-time.
Contradiction.

2

Random generation

We consider a random assignment like this νa, in π - calculus that means
creating a fresh name a. It is that it declares a new unique name a, distinct
from all external names, for use in the process. Based on the propositions
above, we propose a set of specific axioms following which are sound:
(RD1) νa.θ 6|= a.
(RE1) νa.{x = a} ∼= νr.{x = r}.

Proof. For the axiom (RD)1, we assume that a has the sort s. Consider a
polynomial-time adversary B, its advantage is:
P [ε̂, ê←R [[νa.θ, a]]Aη ; ê′ ← B(η, ε̂) : ê′ =Aη ê]

= P [ê←R [[s]]Aη ; ê′ ← B(η, ε̂) : ê =Aη ê
′]

is negligible because of the collision-free property of the distribution.
For the axiom (RE1), we have to show that this implies [[νa.{x = a}]]Aη ≈
[[νr.{x = r}]]Aη . Assume that a and r have the same sort s. Consider a
probabilistic polynomial-time adversary B, its advantage is:
P [φ̂ ←R [[νa.{x = a}]]Aη : B(η, φ̂) = 1] − P [φ̂ ←R [[νr.{x = r}]]Aη :

B(η, φ̂) = 1].
Because r and a have the same sort, so two families of distributions over the
concrete frames φi = {x = e}, e ∈ [[s]]Aη , i = 1, 2 are the same. Therefore,
the advantage of B is negligible.
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Xor function

The following basic axioms are served for xor function:
(XD1) νñ.σ 6|= T , then νñ.νa.{σ|x = a ⊕ T} 6|= T , such that a 6∈ (ñ ∪
fnames(T )).
(XE1) νñ.a.{σ|x = a⊕T} ∼= νñ.r.{σ|x = r}, such that a 6∈ (ñ∪fnames(T )).

Proof. (XD1) We call ϕ = νñ.σ;ϕ1 = νñ.νa.{σ|x = a ⊕ T}. Suppose
that there is a probabilistic polynomial-time adversary B1 able to deduce
the closed term T from ϕ1 correctly with non-negligible probability of suc-
cess. That means the advantage:
P [φ̂1, ê←R [[ϕ1, T ]]Aη ; ê′ ← B1(η, φ̂1) : ê′ =Aη ê]

is non-negligible. Consider the concrete frame φ̂, ê from the family distribu-
tion [[ϕ, T ]]Aη . Then we construct an adversary B2 to deduce the closed term
T from the frame ϕ as follows: B2 construct the concrete frame φ̂′ = {φ̂|x =

â} from the family of distribution [[νa.{x = a}}]]Aη , and the concrete frame
φ̂, and runs B1(η, φ̂′) and output the output of the adversary B1. Because as
we show that the distributions [[x = a⊕ T ]]Aη , [[x = a]]Aη are the same (see
the reason following), so the families of distributions of φ̂ and φ̂′ are exactly
the same. Therefore, the advantage of B2 is the advantage of the adversary
B1.
P [φ̂, ê←R [[ϕ, T ]]Aη ; ê′ ← B2(η, φ̂) : ê′ =Aη ê]

= P [φ̂, ê←R [[ϕ, T ]]Aη ; â←R [[s]]Aη ; ê′ ← B1(η, {φ̂|x = â} : ê′ =Aη ê]

= P [φ̂1, ê←R [[ϕ1, T ]]Aη ; ê′ ← B1(η, φ̂1) : ê′ =Aη ê]

is non-negligible. Otherwise, B2 runs in the probabilistic polynomial-time
algorithm. Contradiction.
(XE1) Assume that a ⊕ T and x = a are the same sort Data. Because the
distribution of [[Data]]Aη is uniform and the property of xor function. There-
fore, given the concrete term T : Data, ∀â0, P [â←R [[x = a⊕ T ]]Aη : â =Aη

â0] = P [â ←R [[x = a]]Aη : â =Aη â0] = 1
|D| , where D is the size of domain

of sort Data. That means the distributions are the same. The advantage of
every probabilistic polynomial-time adversary B1 is:
P [φ̂1 ←R [[ϕ1]]Aη : B(η, φ̂1) = 1]− P [φ̂2 ←R [[ϕ2]]Aη : B(η, φ̂2) = 1] is 0.
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Concatenation function

The following basic axioms are served for concatenation function and
sound:
(CD1) ϕ 6|= T , then ϕ 6|= T ‖ T ′,∀T ′ ∈ Tc.
(CE1) νa.b.{x = a ‖ b} ∼= νr.{x = r}.

Proof. (CD1) Suppose that there is a probabilistic polynomial-time B1

who can deduce the closed term T ‖ T ′ from the closed frame ϕ. Its advan-
tage:
P [φ̂, ê←R [[ϕ, T ‖ T ′]]Aη ; ê′ ← B(η, φ̂) : ê′ =Aη ê].
is non-negligible. We build an adversary B2 as follows: Given the ê′ = T̂ ‖ T̂ ′

be the answer of B1 and the concrete frame φ̂, the adversary B2 runs B(η, φ̂)

returns head(ê′) and the result is exactly T̂ . Otherwise, B2 runs in a proba-
bilistic polynomial-time. Contradiction.
(CE1) Consider the concrete frames φ̂ is sampled from the families distri-
butions [[νa.b.{x = a ‖ b}]]Aη or [[νr.{x = r}]]Aη . Assume that a ‖ b; r are
the same sort Data, so ∀â0, P [r̂ ←R [[x = r]]Aη : r̂ =Aη â0] = P [ê←R [[x =

a ‖ b]]Aη : ê =Aη â0] = 1
|D| , where D is the size of domain of sort Data. That

means the distributions are the same. Therefore, the advantage:
P [φ̂ ←R [[νa.b.{x = a ‖ b}]]Aη : B(η, φ̂) = 1] − P [φ̂ ←R [[νr.{x = r}]]Aη :

B(η, φ̂) = 1].
is negligible.

Hash function

The following basic axioms of a hash function are sound:
(HD1) ϕ 6|= T , {ϕ|x = h(T )} 6|= T such that h(T ) does not appear in ϕ.
(HE1) ϕ 6|= T , {ϕ|x = h(T )} ∼= {ϕ|νr.{x = r}} such that h(T ) does not
appear in ϕ.

Proof. (HD1) We assume that there is an adversary B1 who can deduce
the closed term T from the closed frame ϕ1 = {ϕ|{x = h(T )}} in the prob-
abilistic polynomial-time algorithm. Its advantage is:
P [φ̂1, ê←R [[ϕ1, T ]]Aη ; ê′ ← B1(η, φ̂1) : ê′ =Aη ê].
is non-negligible. Consider the concrete frame φ̂ from the family of dis-
tribution [[ϕ]]Aη . We construct an adversary B2 who deduces the closed
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term T from the closed frame ϕ as follows: B2 constructs a concrete frame
φ̂′ = {φ̂|x = [[h]]Aη(â)} from the concrete frame φ̂1 and the concrete term â

be the concrete term from [[Data]]Aη (we assume that the sort of term T is
Data), runs B1(η, φ̂′) and outputs the output of B1. Duce to the property of
the hash function like a random oracle model, x is drawn from the distribu-
tion (←R [[Hash]]Aη) independently from â and h(T ) does not appear in ϕ.
Hence, the distribution of φ̂′ and φ̂1 are exactly the same, the advantage of
the adversary B2 is:
P [φ̂, ê←R [[ϕ, T ]]Aη ; ê′ ← B2(η, φ̂) : ê′ =Aη ê]

= P [φ̂, ê ←R [[ϕ, T ]]Aη ; â ←R [[Data]]Aη ; ê′ ← B1(η, {φ̂|x = [[h]]Aη(â)}) :

ê′ =Aη ê].

= P [φ̂, ê←R [[ϕ, T ]]Aη ; ê′ ← B1(η, φ̂1) : ê′ =Aη ê].
is non-negligible. Contradiction.
(HE1) Assume that there is a probabilistic polynomial-time adversary B1.
He can distinguish two closed frames {ϕ|x = h(T )} and {ϕ|νr.{x = r}}. Let
φ̂′ is a sample from [[ϕ0 = {ϕ|x = h(T )}]]Aη or [[ϕ1 = {ϕ|νr.{x = r}]]Aη
to be analyzed. B1 must produce a term has form [[h]]Aη(ê′). B1 returns 1 if
xφ̂′ =Aη [[h]]Aη(ê′), otherwise it returns 0. Duce to the collision-free property
of hash function, so ê′ =Aη T̂ . By the definition the advantage of B1 is:
P [φ̂′ ←R [[ϕ0]]Aη : B1(η, φ̂′) = 1]− P [φ̂′ ←R [[ϕ1]]Aη : B1(η, φ̂′) = 0]

= P [φ̂′, ê←R [[ϕ0, T ]]Aη ; ê′ ←R B1(η, φ̂′|dom(ϕ)) : [[h]]Aη(ê′) =Aη [[h]]Aη(ê)]−
P [φ̂′, ê←R [[ϕ1, T ]]Aη ; ê′ ←R B1(η, φ̂′|dom(ϕ)) : xφ̂′ =Aη= [[h]]Aη(ê)]

≥ P [φ̂′, ê ←R [[ϕ0, T ]]Aη ; ê′ ←R B1(η, φ̂′|dom(ϕ)) : ê′ =Aη= ê] − P [φ̂′, ê ←R

[[ϕ1, T ]]Aη ; ê′ ←R B1(η, φ̂′|dom(ϕ)) : xφ̂′ =Aη [[h]]Aη(ê)].
is non-negligible. In the last probability expression is negligible, because
xφ̂′ is drawn from the distribution (←R [[Hash]]Aη) independently from
ê. And the hash function is considered as a random oracle model. Therefore,
P [φ̂′, ê ←R [[ϕ0, T ]]Aη ; ê′ ←R B1(η, φ̂′|dom(ϕ)) : ê′ =Aη= ê] is non-negligible.
That means there is a probabilistic polynomial-time who can deduce the
closed term T form ϕ with the advantage is non-negligible. Contradiction.

One-way function

The following basic axioms are sound and served for one-way permutation
function:
(OD1) νa.{x = f(a)} 6|= a.
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(OE1) νa.{x = f(a)} ∼= νr.{x = r}.
If f is a partially one-way permutation function, then these basic axioms are
sound:
(OD1’) νa.b.{x = f(a||b)} 6|= a.
(OE1’) νa.b.{x = f(a||b)} ∼= νr.{x = r}.
The following rules are consequent:
(OD2) νñ.σ 6|= T , then νñ.a.{σ|x = f(a||h(T ))} 6|= a.
(OE2) νñ.σ 6|= T , then νñ.a.{σ|x = f(a||h(T ))} ∼= νñ.νr.{σ|x = r}.

Proof. (OD1) Consider any adversary B1 who want to deduce the closed
term a from the closed frame ϕ = νa.{x = f(a)}. The advantage of B1 is:
P [φ̂, â←R [[ϕ, a]]Aη ; ê′ ← B1(η, φ̂) : ê′ =Aη â].

= P [[[f ]]Aη(â), â←R [[ϕ, a]]Aη ; ê′ ← B1(η, [[f ]]Aη(â)) : [[f ]]Aη(ê′) =Aη [[f ]]Aη(â)].
is negligible duce to the property of trap-door one-way permutation function,
P [f(A(f(x))) = f(x)] is negligible for all polynomial-time adversary A.
(OE1) We assume that the sort of r and the domain of the trapdoor one-way
permutation function f are the same, we call it Img(f). It is obviously to
see that two families of distributions [[f(a)]]Aη ; [[Img(f)]]Aη are the same.
Therefore, we have the advantage of any adversary who want to distinguish
two closed frames is:
P [φ̂1 ←R [[νa.{x = f(a)}]]Aη : B(η, φ̂1) = 1] − P [φ̂2 ←R [[νr.{x = r}]]Aη :

B(η, φ̂2) = 1].
is negligible.
(OD1′) Consider any adversary B1 who want to deduce the closed term a

from the closed frame ϕ = νa.b.{x = f(a||b)}. The advantage of B1 is:
P [φ̂, â←R [[ϕ, a]]Aη ; ê′ ← B1(η, φ̂) : ê′ =Aη â].

= P [[[f ]]Aη(â||b̂), â←R [[ϕ, a]]Aη ; ∃b̂′; ê′ ← B1(η, [[f ]]Aη(â||b̂)) : [[f ]]Aη(ê′||b̂′) =Aη

[[f ]]Aη(â||b̂′)].
is negligible duce to the property of partially trap-door one-way permuta-
tion function, P [∃y′; f(x′||y′) = f(x||y) : x′ = A(f(x||y))] is negligible for all
polynomial-time adversary A.
(OE1′) We assume that the sort of r and the domain of the partially trap-
door one-way permutation function f are the same, we call it Img(f). It is
obviously to see that two families of distributions [[f(a||b)]]Aη ; [[Img(f)]]Aη
are the same. Therefore, we have the advantage of any adversary who want
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to distinguish two closed frames is:
P [φ̂1 ←R [[νa.b.{x = f(a||b)}]]Aη : B(η, φ̂1) = 1] − P [φ̂2 ←R [[νr.{x =

r}]]Aη : B(η, φ̂2) = 1].
is negligible.
(OD2) For any adversary B who want to deduce the closed term a from the
closed frame ϕ = νñ.a.{σ|x = f(a||h(T ))} in a probabilistic polynomial-
time, then its advantage is:
P [φ̂, â←R [[ϕ, a]]Aη ; ê′ ← B(η, φ̂) : ê′ =Aη â]

= P [φ̂, â←R [[ϕ, a]]Aη ;∃b̂′; ê′ ← B(η, xφ̂) : [[f ]]Aη(ê′||b̂′) =Aη [[f ]]Aη(â||b̂′)].
is negligible duce to the property of partially trap-door one-way permuta-
tion function, P [∃y′; f(x′, y′) = f(x, y) : x′ = A(f(x, y))] is negligible for all
polynomial-time adversary A.
(OE2) Let S be the set consisting of these pairs:
(νñ.σ, νñ.σ);

(νa.{x = a}, νb.{x = b});
(νa.b.{x = f(a||b)}, νr.{x = r});
(νñ.{σ|x = h(T )}, νñ.r.{σ|x = r}) (with νñ.σ 6|= T ).
Then, by the axioms above, we have 〈S〉∼=-sound. In this model, 〈S〉∼= will
make exactly those frames equivalent for which equivalence necessarily fol-
lows from the pairs in the set S. From (νa.b.{x = f(a, b)}, νr.{x = r}); (νñ.σ, νñ.σ),
we have this frames in 〈S〉∼=:
(νñ.a.b.{σ|x = f(a||b)}, νñ.r.{σ|x = r}). And from (νa.{x = a}, νb.{x =

b}); (νñ.{σ|x = h(T )}, νñ.r.{σ|x = r}), the frame:
(νñ.a.{σ|x = f(a||h(T ))}, νñ.a.b.{σ|x = f(a||b)}) ∈ 〈S〉∼=.
Therefore, νñ.a.{σ|x = f(a||h(T ))}, νñ.r.{σ|x = r} ∈ 〈S〉∼=. That is what
we have to prove.
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