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Software is everywhere and there is almost 
nothing that isn’t impacted by software
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• Self-driving car crashes during maneuver 

• Banking transactions are vulnerable to 
attacks 

• Pacemaker fails due to running out of 
resources, e.g. memory, battery, …

• Or Gmail is 2x slower 

• According to Google, there are 1.2 billion users 

• Each user demands 2.2kWh per year

Generates 5 billion lbs of CO2 
emissions more
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Reliability & security flaws

2010: Recalls defective pacemaker devices 
because they cause health consequences 
or death, due to software defects

2014: Toyota recalls 1.9 million cars due to 
software running out of stack space (stack 
overflow)

2015: Hackers remotely control a Jeep on 
the highway because of software security

Our daily life and safety increasingly depend on software 
operating in a reliable and secure manner



Quantitative analysis

• Mathematically reasons about quantitative 
aspects of software 

• Real-time properties: hard/soft deadlines 

• Resource constraints: energy, memory 
allocation, buffer size 

• Probabilistic aspects: random delays, 
failure rates, expected resource usage 

• Security & privacy: leakage of secret data
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Quantitative analysis, con’t

• Is the worst-case execution time less than 10 ms? 

• Is the program secure against timing side-channel attacks? 

• Is the probability that a self-driving car makes a fatality caused by 
accident per hour less than 10-9? 

• What is the worst-case expected time taken for the algorithm to 
terminate? 

• What is the probability of a failure causing the system to shut 
down within 4 hours?
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• Is the worst-case execution time less than 10 ms? 

• Is the program secure against timing side-channel attacks? 

• Is the probability that a self-driving car makes a fatality caused by 
accident per hour less than 10-9? 

• What is the worst-case expected time taken for the algorithm to 
terminate? 

• What is the probability of a failure causing the system to shut 
down within 4 hours?

Quantitative properties are correctness

Quantitative properties are probabilistic and performance



Testing and simulation

• Testing and simulation is not enough for quantitative analysis 

• Probability of a fatality caused by accident per hour of human 
driving is less than 10-6 

• Fatality rate of autonomous vehicles should be less than 10-9 

• Testing needs at least 109 hours of driving to collect data 

• Order of 30 billion miles of data
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• Testing and simulation is not enough for quantitative analysis 

• Probability of a fatality caused by accident per hour of human 
driving is less than 10-6 

• Fatality rate of autonomous vehicles should be less than 10-9 

• Testing needs at least 109 hours of driving to collect data 

• Order of 30 billion miles of data

Almost impossible in practice



Goals and contributions
• Static and automatic quantitative analysis at 

‣ programing language-level with type system, program logic, … 

‣ formal model-level with model checking, theorem proving, … 
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‣ Statistical model checking for timed and probabilistic SystemC 
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‣ formal model-level with model checking, theorem proving, … 

• My contributions 

‣ Formally verified compiler for designing safety-critical systems 

‣ Statistical model checking for timed and probabilistic SystemC 

‣ Static analysis for probabilistic programming 

‣ Type system for preventing side-channel attacks 

• Published at top conferences in formal verification, programming 
language and compiler, and security including CAV, PLDI, Oakland

Focus of this talk



Outline

• Why quantitative analysis? 

• Static analysis for probabilistic programming [PLDI ’18] 

• Type system for enforcing security 

• Future research directions



Probabilistic programming

• Standard programming language like C or ML with two additional 
constructs 

• Sampling assignment “x = Dist” draws a sample from a distribution  

• Probabilistic branching “c1 [1/2] c2” controls flow by observations 

• Goal is probabilistic inference that computes distribution implicitly 
specified by a probabilistic program  

• Desired output can be expected values or probabilities of variables

Probabilistic 
inference

Probabilistic 
Program

Data

Predictions



Applications

• Machine learning 

‣ Specify prior distributions as probabilistic programs and rely on a 
compiler to perform inference and make predictions  

• Security 

‣ Cryptography e.g., probabilistic encryptions as randomize 
algorithms 

• Modeling probabilistic systems 

‣ System performance and reliability e.g., failure rates, reliability of 
communication channels 
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Simulates a random walk that 
ends when walker reaches the 
boundary 

Each time unit: 

• Goes forward 1 step with p = 
3/4 

• Goes backward 1 step with = 
1/4 

What is the expected value of # 
ticks?
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Example

Simulates a random walk that 
ends when walker reaches the 
boundary 

Each time unit: 

• Goes forward 1 step with p = 
3/4 

• Goes backward 1 step with = 
1/4 

What is the expected value of # 
ticks?

Current position Boundary 
condition

Each iterator costs 
1 time unit

A goal of the probabilistic 
compilation



Simulation-based technique

• Current probabilistic compilers use 
simulation to estimate the expected value 

• With x = 0, n = 100, the estimated value 
is 199.665 with # runs = 100000 

• However, simulation-based techniques 
have many drawbacks 

‣ Only give a concrete value 

‣ Run program many times again for 
other parameter values 

‣ Require an efficient compiled code 
(e.g., parallel executable code)
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Expected bound analysis

• A static analysis that infers automatically upper-bounds on the 
expected resource consumption  

• Bounds are multivariate symbolic polynomial and tight with precise 
constant factors 

• A practical implementation working on imperative probabilistic 
programs 

• For example, our tool gives the linear bound 2max(0,n-x) on the 
expected # ticks
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Derivation

Static analyzer

Cost model

Bound

Specifies resource usage 
of primitive constructs

ErrorExpected resource usage 
might be infinite



Absynth - Automatic bound synthesizer

• Accepts imperative probabilistic programs 

• Infers multivariate polynomial bounds on the expected resource 
consumption 

• Automatically analyzes 40 challenging probabilistic programs and 
randomized algorithms with different looping patterns 

• Statically derived bounds are compared with simulation-based 
expectations to show that constant factors are very precise



Precise constant factors

• Percentage errors between statically derived bounds and 
simulation-based values are less than 1% for almost programs 

• For example, figures show the constant factors in derived bounds 
for polynomial programs are very precise
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simulation-based values are less than 1% for almost programs 

• For example, figures show the constant factors in derived bounds 
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Precise constant factors

• Percentage errors between statically derived bounds and 
simulation-based values are less than 1% for almost programs 

• For example, figures show the constant factors in derived bounds 
for polynomial programs are very precise
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Expected potential method

• Associate potential functions 
to program points 

‣ Function from states to 
non-negative values 

• Potential pays the expected 
resource consumption and 
the expected potential at the 
following point 

• The initial potential is an 
upper bound on the 
expected resource usage

�(state) � E(cost) + E(�0(next state))

Total expectation and linearity
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Automation

• Solve the constraints with an 
off-the-shelf LP solver

�(state) � 0

�(state) � E(cost) + E(�0(next state))

Total expectation and linearity

�(init state) � E(⌃cost)

• Fix potential functions as 
linear combinations of 
monomials with unknown 
coefficients

�(�) = ⌃iki ·mi

• Encode the potential 
relations as linear constraints
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Summary

• First automatic expected bound analysis for probabilistic program 
compilation 

• Multivariate polynomial bounds with very precise constant factors 

• Practical implementation for imperative probabilistic programs

Contributions

Limitations

• Non-polynomial bounds 

• Discrete probability distributions with finite domains



Outline

• Why quantitative analysis? 

• Static analysis for probabilistic programming 

• Type system for enforcing security [Oakland ’17] 

• Future research directions
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• No secret data (H) flows to public data (L). Or secret data does not 
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• By observing and controlling public data, the attacker learns 
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• Control public inputs

Attacker model



Flow to resource usage

Program

H H

L L



Flow to resource usage

Program

H H

L L

• Observe public outputs  

• Control public inputs 

• Observe the total resource usage, e.g., 
execution time, energy consumption, … 

• Observe the sizes of secret data (|H|)

Attacker model
RC|H|



Flow to resource usage

Program

H H

L L

• Observe public outputs  

• Control public inputs 

• Observe the total resource usage, e.g., 
execution time, energy consumption, … 

• Observe the sizes of secret data (|H|)

Attacker model
RC|H|

• Nothing about the information flow from H or |H| to resource 
consumption (RC). Can H flows to RC? 

• Noninterference cannot reason about program security
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Example

• Checks sequentially elements until a match for k is found

• Returns a list from k to the end of the list

• Each comparison of k with a list element takes 1 time unit

• By observing the total execution time and controlling k, the 
attacker can reveal the secret list

• With k = 1, if execution time is 4 then the fourth element is 1

k k

Secret list Public input Secret output

Timing side-channel 
attack



Resource-aware noninterference

• No secret data (H) flows to public data (L) 

• All executions where sizes of secret data are fixed, produce total 
constant resource consumption 

• Observing resource consumption tells nothing about secret data

Program

H H

L L

RC|H|



Type-based technique

• Resource type system proves that resource consumption is 
constant if input sizes are fixed 

• Security type system co-operating with resource type system 
enforces resource-aware non-interference 

• Quantification of information leakage of non-constant-resource 
programs 

• Interactive and automatic program repair
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enforces resource-aware non-interference 

• Quantification of information leakage of non-constant-resource 
programs 

• Interactive and automatic program repair

Focus of this part
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of primitive constructs



RAML - Resource Aware ML

•Accepts functional programs written in a subset of OCaml 

• Infers linear and polynomial resource consumption 

•Evaluates and proves resource-aware noninterference of common 
primitive functions, functions related to cryptography, and database 
query



Enforcing resource-aware noninterference

• Check noninterference property first 

• Two extreme ways: global and local reasoning 

• Global reasoning: using the resource type system to check the 
whole program is constant-resource w.r.t secret data sizes 

‣Not efficient (e.g., requires to reason about parts not affected 
by secret data) 

• Local reasoning: ensuring every part affected by secret data is 
resource-aware noninterference 

‣Not sufficient (e.g., rejects valid programs)
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Example

Secret data

List reversal is resource-
aware noninterference

Non resource-aware 
noninterference

Resource-aware noninterference

Program is resource-aware interference but rejected by the 
local reasoning



Global and local reasoning

• Security type system uses a mix of both global and local 
reasoning 

• Ensures that every expression affected by secret data is 

‣ resource-aware noninterference expression, or 

‣ a part of resource-aware noninterference expression  

• Thus, total resource consumption is independent from the 
secret data
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Local reasoning

Local reasoning
Resource-aware noninterference Non resource-aware interference

E1 E2

Public data

The following typing rule reflects the local 
reasoning

Resource-aware 
noninterference Public data
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EE

Global reasoning

Global reasoning

Unknown

E1 E2

E cannot be reasoned locally

E needs to be checked for constant-resource 
globally w.r.t secrete data

The following typing rule reflects the global 
reasoning

Checked by 
resource type 

system

Resource-aware noninterference Non resource-aware interference



Summary

• Novel type system that tracks both information flow and resource 
usage 

• First automatic repair that transforms programs to be constant-resource 

• Practical implementation for OCaml programs

Contributions

Limitations

• Only guarantee at programming language-level 

• No hardware and compilation tools affects



Outline

• Why quantitative analysis? 

• Static analysis for probabilistic programming 

• Type system for enforcing security 

• Future research directions



Research plan

• Developing static analysis for 
compilation of probabilistic 
programs 

‣ Application in formalizing and 
verifying machine-learning and 
robotic software 

‣ Application in reasoning about 
probabilistic security properties

Directions Techniques for automation

• Programming language-based 
and compiler techniques such 
as type checking, program logic, 
and data-flow analysis 

• Formal methods like model 
checking and theorem proving



Tail-bounds analysis



Tail-bounds analysis
• Tails are parts of distribution “far” 
from the expected behavior 

• Specify the probability of “something 
going wrong” 

• Good for analyzing safety properties 
of programs
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Tail-bounds analysis
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Inferred bound (202.0)• Tails are parts of distribution “far” 
from the expected behavior 

• Specify the probability of “something 
going wrong” 

• Good for analyzing safety properties 
of programs

• The expected time taken is 200, what is the probability that the 
walker takes more than 800 time units?

• A perception system, e.g., deep neutral network in a self-driving 
car, makes decision in 10 milliseconds in average. What’s the 
probability that it misses the hard realtime deadline which is 100 
milliseconds?



Concentration inequality

• Given variance of a random variable X, its tail-bound probability 
can be computed using Cherbyshev inequality

8a > 0.P(|X � E[X]| � a)  Var[X]

a2

• For example, the probability that the walker takes more than 800 
time units is

• Automatically infer upper-bounds on variances during the 
compilation based on the expected potential method

P(tick� E[tick] � 3E[tick])  1

6n
= 0.00167



Quantitative analysis with martingales



Quantitative analysis with martingales

• Martingales are fundamental in mathematic and probability theory 

• Consider a probabilistic program as a (infinite) sequence of 
random variables, the martingales can be used to reason about 

‣ Expected value of random variables 

‣ Tail-bound probability with Azuma-Hoeffding inequality
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Quantitative analysis with martingales

• Martingales are fundamental in mathematic and probability theory 

• Consider a probabilistic program as a (infinite) sequence of 
random variables, the martingales can be used to reason about 

‣ Expected value of random variables 

‣ Tail-bound probability with Azuma-Hoeffding inequality
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Inferred bound (200.0)

(2x - tick) is a martingale

• With n = 100, martingale (2x - tick) is 
used to compute

E[tick] = 2n = 200

P(tick = 800 ^ x < 100)  e�25



Automatic martingale generation

• Compiling probabilistic programs by automatically generating 
martingales 

• Using the template-based approach 

‣ Fix martingale expressions as linear combinations of monomials 
with unknown coefficients at program points 

‣ Encode the martingale conditions between program points as 
linear constraints 

‣ Generate optimal martingales by solving the constraints with off-
the-shelf LP solver



Probabilistic sensitivity

• Sensitivity describes how changes in 
inputs of a program can effect outputs 

• Consider a probabilistic program such as a 
machine learning algorithm or statistical 
database

• Sensitivity can be used to reason about the stability of the 
algorithm or the privacy of the database queries 

• Defined as difference between the expected outputs or between 
the output probabilities



Automatic sensitivity analysis

• Design a derivation system that checks automatically the expected 
and probabilistic sensitive programs 

‣ Adapt the previous work on automatic expected and tail-bound 
analyses to reason about the difference between outputs

• For example, expected sensitive w.r.t resource usage can be used to 
reason probabilistically about security against side-channel attacks 

‣ Every pair of same size inputs, the expected resource consumption 
is the same



Conclusions

• Quantitative analysis is critical for reliable and secure software 

• Developed solutions for quantitative analysis 

‣ Formally verified compiler for safety-critical systems 

‣ Formal verification for timed and probabilistic systems 

‣ Type system for enforcing security properties 

‣ Expected bound analysis for probabilistic programming 

• Static, automatic, efficient, and very precise 

• Future directions for efficient and formally verified probabilistic 
compilation


