
Quantitative Analysis for
Reliable and Secure Software

Van Chan Ngo
channgo@cmu.edu

Safe regionUnsafe regionN
u

m
b

e
r

o
f

e
x
e
c
u

ti
o

n
s

Resource usage

W
M
RU

RW
RU

UB
RU

Over-approximation

Tested executions

All executions

LB
RU

BM
RU

RB
RU

Analysis guaranteed resource
usage bounds

LBRU: Lower Bound on Resource Usage

WMRU: Worst Measure Resource Usage

RBRU: Real Best Resource Usage BMRU: Best Measure Resource Usage

UBRU: Upper Bound on Resource UsageRWRU: Real Worst Resource Usage

50 150 250 350 450 550 50
150

250
350

450

0
200000
400000
600000
800000
1x106

1.2x106
1.4x106
1.6x106
1.8x106

Measured expected # ticks
5|[smin,s]|

2 + 10|[smin,s]||[0,smin]| + 5|[smin,s]|

s
smin

WCET Expected WCET Failure rates

Software is everywhere and there is almost
nothing that isn’t impacted by software

What if…

• Self-driving car crashes during maneuver

• Banking transactions are vulnerable to
attacks

• Pacemaker fails due to running out of
resources, e.g. memory, battery, …

What if…

• Self-driving car crashes during maneuver

• Banking transactions are vulnerable to
attacks

• Pacemaker fails due to running out of
resources, e.g. memory, battery, …

• Or Gmail is 2x slower

• According to Google, there are 1.2 billion users

• Each user demands 2.2kWh per year

What if…

• Self-driving car crashes during maneuver

• Banking transactions are vulnerable to
attacks

• Pacemaker fails due to running out of
resources, e.g. memory, battery, …

• Or Gmail is 2x slower

• According to Google, there are 1.2 billion users

• Each user demands 2.2kWh per year

Generates 5 billion lbs of CO2
emissions more

Reliability & security flaws

Reliability & security flaws

2010: Recalls defective pacemaker devices
because they cause health consequences
or death, due to software defects

Reliability & security flaws

2010: Recalls defective pacemaker devices
because they cause health consequences
or death, due to software defects

2014: Toyota recalls 1.9 million cars due to
software running out of stack space (stack
overflow)

Reliability & security flaws

2010: Recalls defective pacemaker devices
because they cause health consequences
or death, due to software defects

2014: Toyota recalls 1.9 million cars due to
software running out of stack space (stack
overflow)

2015: Hackers remotely control a Jeep on
the highway because of software security

Reliability & security flaws

2010: Recalls defective pacemaker devices
because they cause health consequences
or death, due to software defects

2014: Toyota recalls 1.9 million cars due to
software running out of stack space (stack
overflow)

2015: Hackers remotely control a Jeep on
the highway because of software security

Our daily life and safety increasingly depend on software
operating in a reliable and secure manner

Quantitative analysis

• Mathematically reasons about quantitative
aspects of software

• Real-time properties: hard/soft deadlines

• Resource constraints: energy, memory
allocation, buffer size

• Probabilistic aspects: random delays,
failure rates, expected resource usage

• Security & privacy: leakage of secret data

Safe regionUnsafe regionNu
m

be
r o

f e
xe

cu
tio

ns

Resource usage

WMRU RWRU
UBRU

Over-approximation

Tested executions

All executions

LB
RU

BMRU

RBRU

Analysis guaranteed resource
usage bounds

LBRU: Lower Bound on Resource Usage

WMRU: Worst Measure Resource Usage

RBRU: Real Best Resource Usage BMRU: Best Measure Resource Usage

UBRU: Upper Bound on Resource UsageRWRU: Real Worst Resource Usage

50 150 250 350 450 550 50
150

250
350

450

0
200000
400000
600000
800000
1x106

1.2x106
1.4x106
1.6x106
1.8x106

Measured expected # ticks
5|[smin,s]|

2 + 10|[smin,s]||[0,smin]| + 5|[smin,s]|

s
smin

Quantitative analysis, con’t

• Is the worst-case execution time less than 10 ms?

• Is the program secure against timing side-channel attacks?

• Is the probability that a self-driving car makes a fatality caused by
accident per hour less than 10-9?

• What is the worst-case expected time taken for the algorithm to
terminate?

• What is the probability of a failure causing the system to shut
down within 4 hours?

Quantitative analysis, con’t

• Is the worst-case execution time less than 10 ms?

• Is the program secure against timing side-channel attacks?

• Is the probability that a self-driving car makes a fatality caused by
accident per hour less than 10-9?

• What is the worst-case expected time taken for the algorithm to
terminate?

• What is the probability of a failure causing the system to shut
down within 4 hours?

Quantitative properties are correctness

Quantitative analysis, con’t

• Is the worst-case execution time less than 10 ms?

• Is the program secure against timing side-channel attacks?

• Is the probability that a self-driving car makes a fatality caused by
accident per hour less than 10-9?

• What is the worst-case expected time taken for the algorithm to
terminate?

• What is the probability of a failure causing the system to shut
down within 4 hours?

Quantitative properties are correctness

Quantitative properties are probabilistic and performance

Testing and simulation

• Testing and simulation is not enough for quantitative analysis

• Probability of a fatality caused by accident per hour of human
driving is less than 10-6

• Fatality rate of autonomous vehicles should be less than 10-9

• Testing needs at least 109 hours of driving to collect data

• Order of 30 billion miles of data

Testing and simulation

• Testing and simulation is not enough for quantitative analysis

• Probability of a fatality caused by accident per hour of human
driving is less than 10-6

• Fatality rate of autonomous vehicles should be less than 10-9

• Testing needs at least 109 hours of driving to collect data

• Order of 30 billion miles of data

Almost impossible in practice

Goals and contributions
• Static and automatic quantitative analysis at

‣ programing language-level with type system, program logic, …

‣ formal model-level with model checking, theorem proving, …

• My contributions

‣ Formally verified compiler for designing safety-critical systems

‣ Statistical model checking for timed and probabilistic SystemC

‣ Static analysis for probabilistic programming

‣ Type system for preventing side-channel attacks

• Published at top conferences in formal verification, programming
language and compiler, and security including CAV, PLDI, Oakland

Goals and contributions
• Static and automatic quantitative analysis at

‣ programing language-level with type system, program logic, …

‣ formal model-level with model checking, theorem proving, …

• My contributions

‣ Formally verified compiler for designing safety-critical systems

‣ Statistical model checking for timed and probabilistic SystemC

‣ Static analysis for probabilistic programming

‣ Type system for preventing side-channel attacks

• Published at top conferences in formal verification, programming
language and compiler, and security including CAV, PLDI, Oakland

Focus of this talk

Outline

• Why quantitative analysis?

• Static analysis for probabilistic programming [PLDI ’18]

• Type system for enforcing security

• Future research directions

Probabilistic programming

• Standard programming language like C or ML with two additional
constructs

• Sampling assignment “x = Dist” draws a sample from a distribution

• Probabilistic branching “c1 [1/2] c2” controls flow by observations

• Goal is probabilistic inference that computes distribution implicitly
specified by a probabilistic program

• Desired output can be expected values or probabilities of variables

Probabilistic
inference

Probabilistic
Program

Data

Predictions

Applications

• Machine learning

‣ Specify prior distributions as probabilistic programs and rely on a
compiler to perform inference and make predictions

• Security

‣ Cryptography e.g., probabilistic encryptions as randomize
algorithms

• Modeling probabilistic systems

‣ System performance and reliability e.g., failure rates, reliability of
communication channels

Example

Simulates a random walk that
ends when walker reaches the
boundary

Each time unit:

• Goes forward 1 step with p =
3/4

• Goes backward 1 step with =
1/4

What is the expected value of #
ticks?

Example

Simulates a random walk that
ends when walker reaches the
boundary

Each time unit:

• Goes forward 1 step with p =
3/4

• Goes backward 1 step with =
1/4

What is the expected value of #
ticks?

Current position

Example

Simulates a random walk that
ends when walker reaches the
boundary

Each time unit:

• Goes forward 1 step with p =
3/4

• Goes backward 1 step with =
1/4

What is the expected value of #
ticks?

Current position Boundary
condition

Example

Simulates a random walk that
ends when walker reaches the
boundary

Each time unit:

• Goes forward 1 step with p =
3/4

• Goes backward 1 step with =
1/4

What is the expected value of #
ticks?

Current position Boundary
condition

Each iterator costs
1 time unit

Example

Simulates a random walk that
ends when walker reaches the
boundary

Each time unit:

• Goes forward 1 step with p =
3/4

• Goes backward 1 step with =
1/4

What is the expected value of #
ticks?

Current position Boundary
condition

Each iterator costs
1 time unit

A goal of the probabilistic
compilation

Simulation-based technique

• Current probabilistic compilers use
simulation to estimate the expected value

• With x = 0, n = 100, the estimated value
is 199.665 with # runs = 100000

• However, simulation-based techniques
have many drawbacks

‣ Only give a concrete value

‣ Run program many times again for
other parameter values

‣ Require an efficient compiled code
(e.g., parallel executable code)

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400

Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (199.665)

Inferred bound (200.0)

Expected bound analysis

• A static analysis that infers automatically upper-bounds on the
expected resource consumption

• Bounds are multivariate symbolic polynomial and tight with precise
constant factors

• A practical implementation working on imperative probabilistic
programs

• For example, our tool gives the linear bound 2max(0,n-x) on the
expected # ticks

Derivation

Static analyzer

Cost model

BoundError

Derivation

Static analyzer

Cost model

Bound

Specifies resource usage
of primitive constructs

Error

Derivation

Static analyzer

Cost model

Bound

Specifies resource usage
of primitive constructs

ErrorExpected resource usage
might be infinite

Absynth - Automatic bound synthesizer

• Accepts imperative probabilistic programs

• Infers multivariate polynomial bounds on the expected resource
consumption

• Automatically analyzes 40 challenging probabilistic programs and
randomized algorithms with different looping patterns

• Statically derived bounds are compared with simulation-based
expectations to show that constant factors are very precise

Precise constant factors

• Percentage errors between statically derived bounds and
simulation-based values are less than 1% for almost programs

• For example, figures show the constant factors in derived bounds
for polynomial programs are very precise

50 150 250 350 450 550 50
150

250
350

450

0
200000
400000
600000
800000
1x106

1.2x106
1.4x106
1.6x106
1.8x106

Measured expected # ticks
5|[smin,s]|

2 + 10|[smin,s]||[0,smin]| + 5|[smin,s]|

s
smin

0

200000

400000

600000

800000

1x106

1.2x106

1.4x106

1.6x106

100 150 200 250 300 350 400 450 500

#
tic
ks

x

Candlestick
Measured expected # ticks

4.5|[0,x]|2 + 7.5|[0,x]|

Precise constant factors

• Percentage errors between statically derived bounds and
simulation-based values are less than 1% for almost programs

• For example, figures show the constant factors in derived bounds
for polynomial programs are very precise

50 150 250 350 450 550 50
150

250
350

450

0
200000
400000
600000
800000
1x106

1.2x106
1.4x106
1.6x106
1.8x106

Measured expected # ticks
5|[smin,s]|

2 + 10|[smin,s]||[0,smin]| + 5|[smin,s]|

s
smin

0

200000

400000

600000

800000

1x106

1.2x106

1.4x106

1.6x106

100 150 200 250 300 350 400 450 500

#
tic
ks

x

Candlestick
Measured expected # ticks

4.5|[0,x]|2 + 7.5|[0,x]|

Blue lines are plotting of
derived bounds

Precise constant factors

• Percentage errors between statically derived bounds and
simulation-based values are less than 1% for almost programs

• For example, figures show the constant factors in derived bounds
for polynomial programs are very precise

50 150 250 350 450 550 50
150

250
350

450

0
200000
400000
600000
800000
1x106

1.2x106
1.4x106
1.6x106
1.8x106

Measured expected # ticks
5|[smin,s]|

2 + 10|[smin,s]||[0,smin]| + 5|[smin,s]|

s
smin

0

200000

400000

600000

800000

1x106

1.2x106

1.4x106

1.6x106

100 150 200 250 300 350 400 450 500

#
tic
ks

x

Candlestick
Measured expected # ticks

4.5|[0,x]|2 + 7.5|[0,x]|

Blue lines are plotting of
derived bounds

Red points are simulation-
based values

Expected potential method

• Associate potential functions
to program points

‣ Function from states to
non-negative values

• Potential pays the expected
resource consumption and
the expected potential at the
following point

• The initial potential is an
upper bound on the
expected resource usage

Expected potential method

• Associate potential functions
to program points

‣ Function from states to
non-negative values

• Potential pays the expected
resource consumption and
the expected potential at the
following point

• The initial potential is an
upper bound on the
expected resource usage

�(state) � 0

Valuation of program variables

Expected potential method

• Associate potential functions
to program points

‣ Function from states to
non-negative values

• Potential pays the expected
resource consumption and
the expected potential at the
following point

• The initial potential is an
upper bound on the
expected resource usage

�(state) � E(cost) + E(�0(next state))

�(state) � 0

Valuation of program variables

Expected potential method

• Associate potential functions
to program points

‣ Function from states to
non-negative values

• Potential pays the expected
resource consumption and
the expected potential at the
following point

• The initial potential is an
upper bound on the
expected resource usage

�(state) � E(cost) + E(�0(next state))

Total expectation and linearity

�(init state) � E(⌃cost)

�(state) � 0

Valuation of program variables

Automation

• Solve the constraints with an
off-the-shelf LP solver

�(state) � 0

�(state) � E(cost) + E(�0(next state))

Total expectation and linearity

�(init state) � E(⌃cost)

• Fix potential functions as
linear combinations of
monomials with unknown
coefficients

�(�) = ⌃iki ·mi

• Encode the potential
relations as linear constraints

Example analysis on random walk

Example analysis on random walk

Final point

0

Example analysis on random walk

Final point

0

Example analysis on random walk

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

tick 1

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

2max(0,n-x) + 1

tick 1

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

x = x+1 2max(0,n-x) + 1

tick 1

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

x = x+1

2max(0,n-x) - 1

2max(0,n-x) + 1

tick 1

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 1

tick 1

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 3

2max(0,n-x) + 1

tick 1

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

3/4

1/4

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 3

2max(0,n-x) + 1

tick 1

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

2max(0,n-x) 3/4

1/4

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 3

2max(0,n-x) + 1

tick 1

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

2max(0,n-x) 3/4

1/4

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 3

2max(0,n-x) + 1

tick 1x < n

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

2max(0,n-x) 3/4

1/4

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 3

2max(0,n-x) + 1

tick 1x < n

2max(0,n-x)

Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

2max(0,n-x) 3/4

1/4

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 3

2max(0,n-x) + 1

tick 1x < n

2max(0,n-x)

Loop head Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

2max(0,n-x) 3/4

1/4

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 3

2max(0,n-x) + 1

tick 1x < n

2max(0,n-x)

Loop head Final point

0

2max(0,n-x)

weakening

Example analysis on random walk

2max(0,n-x) 3/4

1/4

x = x+1

2max(0,n-x) - 1

x = x-1

2max(0,n-x) + 3

2max(0,n-x) + 1

tick 1x < n

2max(0,n-x)

Loop head

Upper bound

Final point

0

2max(0,n-x)

weakening

Summary

• First automatic expected bound analysis for probabilistic program
compilation

• Multivariate polynomial bounds with very precise constant factors

• Practical implementation for imperative probabilistic programs

Contributions

Limitations

• Non-polynomial bounds

• Discrete probability distributions with finite domains

Outline

• Why quantitative analysis?

• Static analysis for probabilistic programming

• Type system for enforcing security [Oakland ’17]

• Future research directions

Noninterference

Program

H H

L L

• Observe public outputs

• Control public inputs

Attacker model

Noninterference

Program

H H

L L

• No secret data (H) flows to public data (L). Or secret data does not
affect public data

• By observing and controlling public data, the attacker learns
nothing about secret data

• Observe public outputs

• Control public inputs

Attacker model

Flow to resource usage

Program

H H

L L

Flow to resource usage

Program

H H

L L

• Observe public outputs

• Control public inputs

• Observe the total resource usage, e.g.,
execution time, energy consumption, …

• Observe the sizes of secret data (|H|)

Attacker model
RC|H|

Flow to resource usage

Program

H H

L L

• Observe public outputs

• Control public inputs

• Observe the total resource usage, e.g.,
execution time, energy consumption, …

• Observe the sizes of secret data (|H|)

Attacker model
RC|H|

• Nothing about the information flow from H or |H| to resource
consumption (RC). Can H flows to RC?

• Noninterference cannot reason about program security

Example

k k

Secret list Public input Secret output

Example

• Checks sequentially elements until a match for k is found

k k

Secret list Public input Secret output

Example

• Checks sequentially elements until a match for k is found

• Returns a list from k to the end of the list

k k

Secret list Public input Secret output

Example

• Checks sequentially elements until a match for k is found

• Returns a list from k to the end of the list

• Each comparison of k with a list element takes 1 time unit

k k

Secret list Public input Secret output

Example

• Checks sequentially elements until a match for k is found

• Returns a list from k to the end of the list

• Each comparison of k with a list element takes 1 time unit

• By observing the total execution time and controlling k, the
attacker can reveal the secret list

k k

Secret list Public input Secret output

Example

• Checks sequentially elements until a match for k is found

• Returns a list from k to the end of the list

• Each comparison of k with a list element takes 1 time unit

• By observing the total execution time and controlling k, the
attacker can reveal the secret list

• With k = 1, if execution time is 4 then the fourth element is 1

k k

Secret list Public input Secret output

Example

• Checks sequentially elements until a match for k is found

• Returns a list from k to the end of the list

• Each comparison of k with a list element takes 1 time unit

• By observing the total execution time and controlling k, the
attacker can reveal the secret list

• With k = 1, if execution time is 4 then the fourth element is 1

k k

Secret list Public input Secret output

Timing side-channel
attack

Resource-aware noninterference

• No secret data (H) flows to public data (L)

• All executions where sizes of secret data are fixed, produce total
constant resource consumption

• Observing resource consumption tells nothing about secret data

Program

H H

L L

RC|H|

Type-based technique

• Resource type system proves that resource consumption is
constant if input sizes are fixed

• Security type system co-operating with resource type system
enforces resource-aware non-interference

• Quantification of information leakage of non-constant-resource
programs

• Interactive and automatic program repair

Type-based technique

• Resource type system proves that resource consumption is
constant if input sizes are fixed

• Security type system co-operating with resource type system
enforces resource-aware non-interference

• Quantification of information leakage of non-constant-resource
programs

• Interactive and automatic program repair

Focus of this part

Verification

Security
type system

Resource
type system

Automatic
repair

Annotated program

Cost model

Secure

Verification

Security
type system

Resource
type system

Automatic
repair

Annotated program

Cost model

Secure
Specifies confidential

level of inputs & outputs

Verification

Security
type system

Resource
type system

Automatic
repair

Annotated program

Cost model

Secure
Specifies confidential

level of inputs & outputs

Specifies resource usage
of primitive constructs

RAML - Resource Aware ML

•Accepts functional programs written in a subset of OCaml

• Infers linear and polynomial resource consumption

•Evaluates and proves resource-aware noninterference of common
primitive functions, functions related to cryptography, and database
query

Enforcing resource-aware noninterference

• Check noninterference property first

• Two extreme ways: global and local reasoning

• Global reasoning: using the resource type system to check the
whole program is constant-resource w.r.t secret data sizes

‣Not efficient (e.g., requires to reason about parts not affected
by secret data)

• Local reasoning: ensuring every part affected by secret data is
resource-aware noninterference

‣Not sufficient (e.g., rejects valid programs)

Example
Program is resource-aware interference but rejected by the
local reasoning

Example

Secret data

Program is resource-aware interference but rejected by the
local reasoning

Example

Secret data

List reversal is resource-
aware noninterference

Program is resource-aware interference but rejected by the
local reasoning

Example

Secret data

List reversal is resource-
aware noninterference

Non resource-aware
noninterference

Program is resource-aware interference but rejected by the
local reasoning

Example

Secret data

List reversal is resource-
aware noninterference

Non resource-aware
noninterference

Resource-aware noninterference

Program is resource-aware interference but rejected by the
local reasoning

Global and local reasoning

• Security type system uses a mix of both global and local
reasoning

• Ensures that every expression affected by secret data is

‣ resource-aware noninterference expression, or

‣ a part of resource-aware noninterference expression

• Thus, total resource consumption is independent from the
secret data

Local reasoning
Resource-aware noninterference Non resource-aware interference

Local reasoning
Resource-aware noninterference Non resource-aware interference

E1

Local reasoning
Resource-aware noninterference Non resource-aware interference

E1 E2

Local reasoning
Resource-aware noninterference Non resource-aware interference

E1 E2

Public data

E

Local reasoning

Local reasoning
Resource-aware noninterference Non resource-aware interference

E1 E2

Public data

E

Local reasoning

Local reasoning
Resource-aware noninterference Non resource-aware interference

E1 E2

Public data

The following typing rule reflects the local
reasoning

E

Local reasoning

Local reasoning
Resource-aware noninterference Non resource-aware interference

E1 E2

Public data

The following typing rule reflects the local
reasoning

Resource-aware
noninterference Public data

Global reasoning

Unknown

Resource-aware noninterference Non resource-aware interference

Global reasoning

Unknown

E1 E2

Resource-aware noninterference Non resource-aware interference

E

Global reasoning

Unknown

E1 E2

Resource-aware noninterference Non resource-aware interference

E

Global reasoning

Unknown

E1 E2

E cannot be reasoned locally

Resource-aware noninterference Non resource-aware interference

E

Global reasoning

Unknown

E1 E2

E cannot be reasoned locally

E needs to be checked for constant-resource
globally w.r.t secrete data

Resource-aware noninterference Non resource-aware interference

EE

Global reasoning

Global reasoning

Unknown

E1 E2

E cannot be reasoned locally

E needs to be checked for constant-resource
globally w.r.t secrete data

Resource-aware noninterference Non resource-aware interference

EE

Global reasoning

Global reasoning

Unknown

E1 E2

E cannot be reasoned locally

E needs to be checked for constant-resource
globally w.r.t secrete data

The following typing rule reflects the global
reasoning

Resource-aware noninterference Non resource-aware interference

EE

Global reasoning

Global reasoning

Unknown

E1 E2

E cannot be reasoned locally

E needs to be checked for constant-resource
globally w.r.t secrete data

The following typing rule reflects the global
reasoning

Checked by
resource type

system

Resource-aware noninterference Non resource-aware interference

Summary

• Novel type system that tracks both information flow and resource
usage

• First automatic repair that transforms programs to be constant-resource

• Practical implementation for OCaml programs

Contributions

Limitations

• Only guarantee at programming language-level

• No hardware and compilation tools affects

Outline

• Why quantitative analysis?

• Static analysis for probabilistic programming

• Type system for enforcing security

• Future research directions

Research plan

• Developing static analysis for
compilation of probabilistic
programs

‣ Application in formalizing and
verifying machine-learning and
robotic software

‣ Application in reasoning about
probabilistic security properties

Directions Techniques for automation

• Programming language-based
and compiler techniques such
as type checking, program logic,
and data-flow analysis

• Formal methods like model
checking and theorem proving

Tail-bounds analysis

Tail-bounds analysis
• Tails are parts of distribution “far”
from the expected behavior

• Specify the probability of “something
going wrong”

• Good for analyzing safety properties
of programs

Tail-bounds analysis

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400

Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (200.807)

Inferred bound (202.0)• Tails are parts of distribution “far”
from the expected behavior

• Specify the probability of “something
going wrong”

• Good for analyzing safety properties
of programs

Tail-bounds analysis

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400

Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (200.807)

Inferred bound (202.0)• Tails are parts of distribution “far”
from the expected behavior

• Specify the probability of “something
going wrong”

• Good for analyzing safety properties
of programs

• The expected time taken is 200, what is the probability that the
walker takes more than 800 time units?

Tail-bounds analysis

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400

Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (200.807)

Inferred bound (202.0)• Tails are parts of distribution “far”
from the expected behavior

• Specify the probability of “something
going wrong”

• Good for analyzing safety properties
of programs

• The expected time taken is 200, what is the probability that the
walker takes more than 800 time units?

• A perception system, e.g., deep neutral network in a self-driving
car, makes decision in 10 milliseconds in average. What’s the
probability that it misses the hard realtime deadline which is 100
milliseconds?

Concentration inequality

• Given variance of a random variable X, its tail-bound probability
can be computed using Cherbyshev inequality

8a > 0.P(|X � E[X]| � a) Var[X]

a2

• For example, the probability that the walker takes more than 800
time units is

• Automatically infer upper-bounds on variances during the
compilation based on the expected potential method

P(tick� E[tick] � 3E[tick]) 1

6n
= 0.00167

Quantitative analysis with martingales

Quantitative analysis with martingales

• Martingales are fundamental in mathematic and probability theory

• Consider a probabilistic program as a (infinite) sequence of
random variables, the martingales can be used to reason about

‣ Expected value of random variables

‣ Tail-bound probability with Azuma-Hoeffding inequality

Quantitative analysis with martingales

• Martingales are fundamental in mathematic and probability theory

• Consider a probabilistic program as a (infinite) sequence of
random variables, the martingales can be used to reason about

‣ Expected value of random variables

‣ Tail-bound probability with Azuma-Hoeffding inequality

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400
Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (199.665)

Inferred bound (200.0)

(2x - tick) is a martingale

• With n = 100, martingale (2x - tick) is
used to compute

Quantitative analysis with martingales

• Martingales are fundamental in mathematic and probability theory

• Consider a probabilistic program as a (infinite) sequence of
random variables, the martingales can be used to reason about

‣ Expected value of random variables

‣ Tail-bound probability with Azuma-Hoeffding inequality

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400
Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (199.665)

Inferred bound (200.0)

(2x - tick) is a martingale

• With n = 100, martingale (2x - tick) is
used to compute

E[tick] = 2n = 200

Quantitative analysis with martingales

• Martingales are fundamental in mathematic and probability theory

• Consider a probabilistic program as a (infinite) sequence of
random variables, the martingales can be used to reason about

‣ Expected value of random variables

‣ Tail-bound probability with Azuma-Hoeffding inequality

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400
Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (199.665)

Inferred bound (200.0)

(2x - tick) is a martingale

• With n = 100, martingale (2x - tick) is
used to compute

E[tick] = 2n = 200

P(tick = 800 ^ x < 100) e�25

Automatic martingale generation

• Compiling probabilistic programs by automatically generating
martingales

• Using the template-based approach

‣ Fix martingale expressions as linear combinations of monomials
with unknown coefficients at program points

‣ Encode the martingale conditions between program points as
linear constraints

‣ Generate optimal martingales by solving the constraints with off-
the-shelf LP solver

Probabilistic sensitivity

• Sensitivity describes how changes in
inputs of a program can effect outputs

• Consider a probabilistic program such as a
machine learning algorithm or statistical
database

• Sensitivity can be used to reason about the stability of the
algorithm or the privacy of the database queries

• Defined as difference between the expected outputs or between
the output probabilities

Automatic sensitivity analysis

• Design a derivation system that checks automatically the expected
and probabilistic sensitive programs

‣ Adapt the previous work on automatic expected and tail-bound
analyses to reason about the difference between outputs

• For example, expected sensitive w.r.t resource usage can be used to
reason probabilistically about security against side-channel attacks

‣ Every pair of same size inputs, the expected resource consumption
is the same

Conclusions

• Quantitative analysis is critical for reliable and secure software

• Developed solutions for quantitative analysis

‣ Formally verified compiler for safety-critical systems

‣ Formal verification for timed and probabilistic systems

‣ Type system for enforcing security properties

‣ Expected bound analysis for probabilistic programming

• Static, automatic, efficient, and very precise

• Future directions for efficient and formally verified probabilistic
compilation

