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Figure 8. Comparison of automatically derived bounds with measured cost samples. On the left: histogram of the distribution
of #ticks for rdwalk with n = 100. On the right: The inferred bound on the expected #ticks (blue lines) compared to the
measured expected values for various input sizes (red crosses) for trader (at the center) and pol04 (on the right). In the latter,
the candlesticks represent the highest and lowest sampled values and the second and third quartile.

The decision to base our analysis on AARA is mainly mo-
tivated by the strong connection to existing techniques for
(manually) analyzing expected runtime (see next paragraph)
and the general advantages of AARA, including composition-
ality, tracking of amortization e�ects, �exible cost models,
and e�cient bound inference using LP solving.
We are only aware of few works that study the analysis

of expected resource usage of probabilistic programs. Chat-
terjee et al. [27] propose a technique for solving recurrence
relations that arise in the analysis of expected runtime cost.
Their technique can derive bounds of the formO(logn),O(n),
andO(n logn). Similarly, Flajolet et al. [35] describe an auto-
matic for average-case analysis that is based on generating
functions and that can be seen as a method for solving re-
currences. While these techniques apply to recurrences that
describe the resource usage of randomized algorithms, the
works do not propose a technique for deriving recurrences
from a program. It is therefore not a push-button analysis
for probabilistic programs but complementary to our work
since they can derive logarithmic bounds.

Analysis of probabilistic programs. Considering work on
analyzing probabilistic programs, most closely related is a
recent line of work by Kaminski et al. [60, 76]. The goal of
this work is to characterize the expected runtime of proba-
bilistic programs. However, they use a WP calculus to derive
pre-expectations and do not consider any automation. The
technique can be seen as a generalization of quantitative
Hoare logic [17, 19] for AARA to the probabilistic setting
but does not provide support for automatic reasoning. In
fact, when attempting to generalize AARA to probabilistic
programs we were �rst unaware of the existing work and
rediscovered some of the proof rules. Our contributions are
new specialized proof rules that allow for automation using
LP solving and a prototype implementation of the new tech-
nique. While our soundness proof is original, it leverages the
proof by Kaminski et al. by relying on the soundness of the
rules for weakest preconditions.
The use of pre-expectations for reasoning about proba-

bilistic programs dates back to the pioneering work of Kozen

and others [20, 64, 69]. It has been automated using con-
straint generation [62] and abstract interpretation [23] to
derive quantitative invariants. However, it is unclear how
to use them to automatically derive symbolic (polynomial)
bounds like in our work.
Another body of research relies probabilistic pushdown

automata and martingale theory to analyze the termination
time [15] and the expected number of steps [33]. The use of
martingale theory to automatically analyze probabilistic pro-
grams has been pioneered in [22]. While their technique also
relies on linear constraints, it is proving almost-sure termina-
tion instead of resource bounds and relies on Farka’s lemma.
More general methods [25] are able to synthesize polynomial
ranking-supermartingales for proving termination.
Abstract interpretation has also been applied to proba-

bilistic programs [29, 70, 71] but we are not aware of its
application to derive bounds on the expected resource us-
age. Another approach to automatically analyze probabilistic
programs is based on symbolic inference [38] and analyzing
execution paths with statistical techniques [14, 39, 78]. In
the context of analyzing di�erential privacy, there are works
with limited automation that focus on deriving bounds on
the privacy budget for probabilistic programs [10, 46].

9 Conclusion
We have introduced a new technique for automatically infer-
ring polynomial bounds on the expected resource consump-
tion of probabilistic programs. The technique is a combina-
tion of existing manual quantitative reasoning for probabilis-
tic programs and an automatic worst-case bound analysis for
deterministic programs. The e�ectiveness of the technique
is demonstrated with an implementation and the automatic
analysis of challenging examples from previous work.
In the future, we plan to study how to build on the intro-

duced technique to automatically derive tail bounds, that is,
worst-case bounds that hold with high probability. We are
also working on a more direct soundness argument that also
works for non-monotone resources. Finally, we plan to build
on Resource Aware ML [49] to apply the expected potential
method to (higher-order) functional programs.
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Expected	potential	method

•Associate	potential	functions	to	program	points	

- Function	from	states	to	non-negative	values	

•Potential	pays	the	expected	resource	consumption	
and	the	expected	potential	at	the	following	point	

•The	initial	potential	is	an	upper	bound	on	the	
expected	resource	usage

�(state) � E(cost) + E(�0(next state))

Total	expectation	and	linearity

�(init state) � E(⌃cost)

�(state) � 0



Quantitative	Hoare	logic

{Φ′�}{Φ} c



Quantitative	Hoare	logic

{Φ′�}
Expected	cost	𝔼(c)

{Φ} c



Quantitative	Hoare	logic

{Φ′�}
Expected	cost	𝔼(c)

{Φ}
Resource	available	before	
executing	c c



Quantitative	Hoare	logic

{Φ′�}
Expected	cost	𝔼(c)

is	the	expected	resource	
available	after	executing	c

𝔼(Φ′�)

{Φ}
Resource	available	before	
executing	c c



Quantitative	Hoare	logic

{Φ′�}
Expected	cost	𝔼(c)

is	the	expected	resource	
available	after	executing	c

𝔼(Φ′�)

{Φ}
Resource	available	before	
executing	c c

σ Φ(σ)For	all	states					,													is	sufficient	to	pay	for	the	expected	cost	of	executing		c		
and	the	expected	resource	available	after	the	execution	w.r.t	the	distribution	
over	next	states



Example	rules

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 � ) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j ) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN ) Æu = (u1, . . . ,uN )| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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(Q:A�����)
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(Q:T���)

` {�;Q} tick (q) {�;Q � q}
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` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j ) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN ) Æu = (u1, . . . ,uN )| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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(Q:A�����)
A = (ai, j ) 8j 2 Sx=e .bj [e/x] =
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i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN ) Æu = (u1, . . . ,uN )| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}
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A = (ai, j ) 8j 2 Sx=e .bj [e/x] =
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i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ
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` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN ) Æu = (u1, . . . ,uN )| 8i .� |= �Fi � 0 8i .ui � 0 Q
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means



Example	rules

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 � ) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j ) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0
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� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =
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i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =
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i ai, j · bi . That means
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` {�;Q + x} call P {�0;Q 0 + x}

(R����)
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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Õ
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` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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point-wise, that is,
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i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q
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The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let
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0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,
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i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let
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0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN ) Æu = (u1, . . . ,uN )| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =
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i ai, j · bi . That means
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` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}
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� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =
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i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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Õ
i pi ·Qi
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =
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i ai, j · bi . That means
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(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN ) Æu = (u1, . . . ,uN )| 8i .� |= �Fi � 0 8i .ui � 0 Q
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =
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i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =
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i ai, j · bi . That means
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(Q:A�����)
A = (ai, j ) 8j 2 Sx=e .bj [e/x] =
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i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN ) Æu = (u1, . . . ,uN )| 8i .� |= �Fi � 0 8i .ui � 0 Q
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}
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(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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point-wise, that is,
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i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let
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0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,
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i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =
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the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.
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Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.
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the program state, so we require the logical context � in the
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with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
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the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 � ) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
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0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN ) Æu = (u1, . . . ,uN )| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =
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(Q:A����)

` {�; 0} abort {�0;Q 0}
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P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}
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Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means
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i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
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and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be
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4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let
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0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
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For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i 2 Q such that bj [e/x] =
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i ai, j · bi . That means
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Automation

• Obtain the optimal solution by solving the generated constraints with an off-the-shelf LP solver

• Encode the relations between the potential functions at the current and next program points as 
linear constraints

• Fix potential functions as linear combinations of monomials with unknown coefficients

Φ := ∑
i

ki ⋅ mi

M := 1 ∣ x ∣ M1 ⋅ M2 ∣ max(0,Φ)
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Derivation:	Bug’s	life
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				prob(1,1):	
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Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	
{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

{	0<n<w;	inv(n,w)-|[n,w]|+|[0,n]|	}

{	0<n<w;	inv(n,w)+|[n,w]|-|[0,n]|	}

{	0<n<w;	inv(n,w)	}
Weighted	sum	in	which	
terms	are	canceled	out



Implementation:	Absynth

•Accepts	imperative	(integer)	probabilistic	programs	

•Infers	multivariate	polynomial	bounds	on	the	expected	resource	consumption	

•Automatically	analyzes	40	challenging	probabilistic	programs	and	randomized	algorithms	with	
different	looping	patterns	

•Statically	derived	bounds	are	compared	with	simulation-based	expectations	to	show	that	
constant	factors	are	very	precise
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Precise	constant	factors

•For	example,	figures	show	the	constant	factors	in	derived	bounds	for	random	walk	and	
polynomial	programs	are	very	precise
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Application:	Tail-bound	analysis
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concentration	inequalities	(e.g.,	Markov	and	Chebyshev’s	
inequalities)	

•Assert	that	resource	usage	is	bounded	with	a	high	
probability	

•Thus,	they	are	good	for	analyzing	safety	properties	of	
programs
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Then Markov’s inequality states that for all a > 0 the proba-
bility of |t | � a is bounded by the expectation of |t | divided
by a. Since t is non-negative we have

P(t � a)  E(t)
a

Therefore, by automatically deriving bounds on the expected
resource usage, we can bound the probability of a large devi-
ation from the expected resource consumption.
For example, consider the simple random walk from Sec-

tion 3.1 again with the initial value of x = n > 0. Then the
expected resource usage is bounded by 2|[0,n]|. Assume that
we want to bound the probability that the resource usage is
greater than 10|[0,n]|. Following the Markov inequality and
the derived bound, we have:

P(t � 10|[0,n]|)  E(t)
10|[0,n]| 

2|[0,n]|
10|[0,n]| = 0.2

Chebyshev’s inequality. If the resource usage t has �nite
expected value and �nite non-zero variance Var(t). Then for
all k 2 R such that k > 0, Chebyshev’s inequality implies

P(|t�E(t)| � a)  Var(t)
a2

=
E((t�E(t))2)

a2
=
E(t2) � E(t)2

a2
.

Hence, by deriving a lower bound ` on the resource usage t
and a upper bound u the squared expected resource usage
t
2, we get P(|t � E(t)| � a) = u�`2

a2 .
It is in general possible to derive such tail bounds with the

expected potential method. We can use a auxiliary variable
sqt to encode the square of resource usage, for example by
squaring the resource usage t at the exit point of the program.
While the potential method generally supports non-linear
arithmetic [54], this would have to be implemented with a
while loop in the current version of Absynth. Similarly, the
potential method can be used to derive lower bounds [76]
but this is not yet implemented in Absynth.
We leave a systematic study of deriving tail bounds with

the expected potential method for future work.

8 Implementation and experiments
In this section, we �rst describe the implementation of the
automatic analysis in the toolAbsynth. Then, we evaluate the
performance of our tool on a set of challenging examples.2

8.1 Implementation
Absynth is implemented in OCaml and consists of about
5000 LOC. The tool currently works on imperative integer
programs written in a Python-like syntax that supports re-
cursive procedures. It also has a C interface based on LLVM.
Currently, Absynth supports four common distributions:
Bernoulli, binomial, hyper-geometric, and uniform. How-
ever, there are no limitations to the distributions that can be
supported as long as they have a �nite domain.
2The source code of the examples, Absynth, the experiments, and the
simulation-based comparison have been submitted as auxiliary material.

Potential functions. To discovery the bounds on expected
resource usage automatically, in this work, we focus on in-
ferring polynomial potential functions that are linear com-
binations of base functions picked among the monomials.
Formally, they are de�ned by the following syntax.

M := 1 | x | M1·M2 | |[0, P]| x 2 VID
P := k ·M | P1+P2 k 2 Q

Generating base and rewrite functions. Our analysis can
work with every set of base functions. While it would be
possible to to �x a set of functions once and for all as in
previous work on resource analysis [20, 49], we found that it
is more e�ective to select the base functions for each program
using a heuristic [19].
At each program point, the abstract interpretation (AI)

used in Absynth to infer logical contexts derives linear in-
equalities between program variables. The linear inequalities
of the form

Õ
i ai ·xi +b � 0, where ai ,b 2 Q, are used to gen-

erate a set of base functions. One can use a more complex and
powerful AI such as the Apron library [60]. In practice, we
found that our simple AI is su�cient to infer many bounds
and provides good performance. For example, if the AI de-
rives n � x � 1 � 0 at one program point, then the heuristic
will add themonomials |[0,n � x]| and |[0,n � x � 1]| as base
functions. Higher-degree base functions can be constructed
by considering successive powers and products of simpler
base functions, e.g., degree 2 base functions |[0,n � x]|2 and
|[0,n � x � 1]| · |[0,n � x]|.
Given the set of base functions at a program point, they

are used to generate a set of rewrite functions, in which
a Presburger decision procedure is used to reason about
the non-negativity of rewrite functions. Recall that a rewrite
function is a linear combination of base functions of the formÕ

i ki ·bi , where ki 2 Q. The set of rewrite functions allow to
transfer potential to and from the base functions following
the inference rule Q:W�����. For instance, for the base
functions |[0,n � x]| and |[0,n � x � 1]|, the heuristic adds
the linear combination F = |[0,n � x]| � |[0,n � x � 1]| � 1
as a rewrite function. As shown in Figure 7, F can be used for
an assignment x = x +1when n�x > 0 to turn the potential
|[0,n � x]| into |[0,n � x]|+1, e�ectively extracting one unit
of constant potential.

whi l e ( x<n ) {
{ |[0, n � x ] | } �
{ |[0, n � x � 1] |+1}
x = x + 1 ;
{ |[0, n � x ] |+1}

}

Figure 7. Rewriting func-
tion example.

User interaction. Occasion-
ally, when a program re-
quires a complex potential
transformation, our heuristic
might not be sophisticated
enough to identify an appro-
priate set of rewrite func-
tions. In this case, the user
can manually specify a set of
rewrite functions as hints to be used by the analysis. These
hints, in contrast with typical assertions, have no runtime
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Then Markov’s inequality states that for all a > 0 the proba-
bility of |t | � a is bounded by the expectation of |t | divided
by a. Since t is non-negative we have

P(t � a)  E(t)
a

Therefore, by automatically deriving bounds on the expected
resource usage, we can bound the probability of a large devi-
ation from the expected resource consumption.
For example, consider the simple random walk from Sec-

tion 3.1 again with the initial value of x = n > 0. Then the
expected resource usage is bounded by 2|[0,n]|. Assume that
we want to bound the probability that the resource usage is
greater than 10|[0,n]|. Following the Markov inequality and
the derived bound, we have:

P(t � 10|[0,n]|)  E(t)
10|[0,n]| 

2|[0,n]|
10|[0,n]| = 0.2

Chebyshev’s inequality. If the resource usage t has �nite
expected value and �nite non-zero variance Var(t). Then for
all k 2 R such that k > 0, Chebyshev’s inequality implies

P(|t�E(t)| � a)  Var(t)
a2

=
E((t�E(t))2)

a2
=
E(t2) � E(t)2

a2
.

Hence, by deriving a lower bound ` on the resource usage t
and a upper bound u the squared expected resource usage
t
2, we get P(|t � E(t)| � a) = u�`2

a2 .
It is in general possible to derive such tail bounds with the

expected potential method. We can use a auxiliary variable
sqt to encode the square of resource usage, for example by
squaring the resource usage t at the exit point of the program.
While the potential method generally supports non-linear
arithmetic [54], this would have to be implemented with a
while loop in the current version of Absynth. Similarly, the
potential method can be used to derive lower bounds [76]
but this is not yet implemented in Absynth.
We leave a systematic study of deriving tail bounds with

the expected potential method for future work.

8 Implementation and experiments
In this section, we �rst describe the implementation of the
automatic analysis in the toolAbsynth. Then, we evaluate the
performance of our tool on a set of challenging examples.2

8.1 Implementation
Absynth is implemented in OCaml and consists of about
5000 LOC. The tool currently works on imperative integer
programs written in a Python-like syntax that supports re-
cursive procedures. It also has a C interface based on LLVM.
Currently, Absynth supports four common distributions:
Bernoulli, binomial, hyper-geometric, and uniform. How-
ever, there are no limitations to the distributions that can be
supported as long as they have a �nite domain.
2The source code of the examples, Absynth, the experiments, and the
simulation-based comparison have been submitted as auxiliary material.

Potential functions. To discovery the bounds on expected
resource usage automatically, in this work, we focus on in-
ferring polynomial potential functions that are linear com-
binations of base functions picked among the monomials.
Formally, they are de�ned by the following syntax.

M := 1 | x | M1·M2 | |[0, P]| x 2 VID
P := k ·M | P1+P2 k 2 Q

Generating base and rewrite functions. Our analysis can
work with every set of base functions. While it would be
possible to to �x a set of functions once and for all as in
previous work on resource analysis [20, 49], we found that it
is more e�ective to select the base functions for each program
using a heuristic [19].
At each program point, the abstract interpretation (AI)

used in Absynth to infer logical contexts derives linear in-
equalities between program variables. The linear inequalities
of the form

Õ
i ai ·xi +b � 0, where ai ,b 2 Q, are used to gen-

erate a set of base functions. One can use a more complex and
powerful AI such as the Apron library [60]. In practice, we
found that our simple AI is su�cient to infer many bounds
and provides good performance. For example, if the AI de-
rives n � x � 1 � 0 at one program point, then the heuristic
will add themonomials |[0,n � x]| and |[0,n � x � 1]| as base
functions. Higher-degree base functions can be constructed
by considering successive powers and products of simpler
base functions, e.g., degree 2 base functions |[0,n � x]|2 and
|[0,n � x � 1]| · |[0,n � x]|.
Given the set of base functions at a program point, they

are used to generate a set of rewrite functions, in which
a Presburger decision procedure is used to reason about
the non-negativity of rewrite functions. Recall that a rewrite
function is a linear combination of base functions of the formÕ

i ki ·bi , where ki 2 Q. The set of rewrite functions allow to
transfer potential to and from the base functions following
the inference rule Q:W�����. For instance, for the base
functions |[0,n � x]| and |[0,n � x � 1]|, the heuristic adds
the linear combination F = |[0,n � x]| � |[0,n � x � 1]| � 1
as a rewrite function. As shown in Figure 7, F can be used for
an assignment x = x +1when n�x > 0 to turn the potential
|[0,n � x]| into |[0,n � x]|+1, e�ectively extracting one unit
of constant potential.

whi l e ( x<n ) {
{ |[0, n � x ] | } �
{ |[0, n � x � 1] |+1}
x = x + 1 ;
{ |[0, n � x ] |+1}

}

Figure 7. Rewriting func-
tion example.

User interaction. Occasion-
ally, when a program re-
quires a complex potential
transformation, our heuristic
might not be sophisticated
enough to identify an appro-
priate set of rewrite func-
tions. In this case, the user
can manually specify a set of
rewrite functions as hints to be used by the analysis. These
hints, in contrast with typical assertions, have no runtime
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Future	work

•Lower	bounds	on	the	expected	resource	usage	

•Tail-bound	analysis	with	Chebyshev’s	inequality


