tfﬁ»{
frﬂm | - | Credited to Evan X. Merz

Histogram: 1D random walk Drunk painting: 2D random walks

Bounded Expectations:
Resource Analysis for Probabilistic Programs

Van Chan Ngo Quentin Carbonneaux Jan Hoffmann

Carnegie Mellon University

Static resource analysis

Given: A program P

Question: What is the amount of resource as
function of the inputs sizes that is
required to execute P?

Static resource analysis

Given: A program P

Time, memory, or energy

Question: What is the amount of resource as

function of the inputs sizes that is
required to execute P?

Static resource analysis

Given: A program P

Time, memory, or energy

Question: What is the amount of resource as
function of the inputs sizes that is
required to execute P?

Goal: To help developers answer this question
as an analysis of the programming
language support

Static resource analysis

Given: A program P Techniques

Time, memory, or energy

Recurrence Relations

Question: What is the amount of resource as
function of the inputs sizes that is Type Systems

required to execute P?

Abstract Interpretation

Goal: To help developers answer this question
as an analysis of the programming

Term Rewriting

language support
guag PP Ranking Functions

Automatic Amortized Resource
Analysis

Static resource analysis

Given: A program P Techniques

Time, memory, or energy

Recurrence Relations

Question: What is the amount of resource as

function of the inputs sizes that is Type Systems

required to execute P?

Abstract Interpretation

Goal: To help developers answer this question
as an analysis of the programming

Term Rewriting

language support
guage supp Ranking Functions

Worst-case

resource usage Automatic Amortized Resource
Analysis

Probabilistic programs

* Are usual functional or imperative programs with two added constructs:
- Sampling assignments to draw values at random from probability distributions, and

- Probabilistic branchings to control program flow by observations

Probabilistic programs

* Are usual functional or imperative programs with two added constructs:
- Sampling assignments to draw values at random from probability distributions, and

- Probabilistic branchings to control program flow by observations

“The crux of probabilistic programming is to consider normal-looking programs as if they were
P prog & g Prog y
probability distributions”

Probabilistic programs

* Are usual functional or imperative programs with two added constructs:
- Sampling assignments to draw values at random from probability distributions, and

- Probabilistic branchings to control program flow by observations

“The crux of probabilistic programming is to consider normal-looking programs as if they were
P prog & g Prog y
probability distributions”

e Some probabilistic programming languages: Probabilistic C, Church, PyM(3, Figaro, Edward

Example: Random walk

Example: Random walk

Current
position

Example: Random walk

| | | |
X-1 X X+1 n

Current

position

Example: Random walk

X-1 X X+1 N
Boundary

Current

position

while x < n:
prob(3,1):
X=X+1
else:
X=X-1
tick 1

Example: Random walk

Current
position

while x < n:
prob(3,1):
X=X+1
else:
X=X-1
tick 1

Cost = # iterations

= walking time

N

Example: Random walk

0.75

X-1 X X+1 n
Boundary

 The worst-case cost is infinite

Current
Ition
pOSItio - It does not make sense to reason.about
while x < n:
prob(3,1):
X=X+1
else: Cost = # iterations
X=X-1

= walking time

tick 1

Example: Random walk

0.75

X-1 X X+1 N
Boundary

Current The worst-case cost is infinite

position

- It does not make sense to reason.about

while x < n:
prob(3,1):
X=X+1
else:
X=X-1
tick 1

|t is better to reason about:

- The expected value of the cost, or
Cost = # iterations
SWEIShegilnlsy - The probability that the cost is bounded by a threshold

Example: Random walk

0.75

| | | | ’

X-1 X X+1 N
Boundary

Current The worst-case cost is infinite

position

- It does not make sense to re

while x < n:
prob(3,1):
X=X+1
else:
X=X-1
tick 1

This talk: automatic bounds
e |t is better to reason about: on the expected cost

- The expected value of the cost, or
Cost = # iterations
SWEIShegilnlsy - The probability that the cost is bounded by a threshold

Why expected resource usage?

Why expected resource usage?

There are many interesting applications:
* Predict the expected resource usage of sampling in probabilistic inference

* Reason about the average-case complexity of randomized algorithms, positive and almost-
sure terminations

Why expected resource usage?

There are many interesting applications:
* Predict the expected resource usage of sampling in probabilistic inference

* Reason about the average-case complexity of randomized algorithms, positive and almost-
sure terminations

It is a technical challenge problem:

« Manual analysis is often difficult or impossible even for simple programs (e.g., requires
probability theory knowledge, mathematic reasoning, ...)

* No techniques that automatically infer symbolic bounds on the expected cost

Approach: Expected potential method

K ’81), Mcl |
ozen ('81), Mclver et a Hofmann and Jost ('03)

(’04), Kaminski et al (’16)

Weakest Pre-expectation Automatic Amortized
Calculus Resource Analysis
Strength and conceptual Template-based bound
simplicity inference
Soundness w.r.t a simple Efficiently reduced to LP
operational semantics solving

Expected Potential Method

Approach: Expected potential method

Kozen (’81), Mclver et al

Hofmann and Jost (’03)

(’04), Kaminski et al (’16)

Weakest Pre-expectation Automatic Amortized
Calculus Resource Analysis
Strength and conceptual Template-based bound
simplicity inference
Soundne.ess w.r.t a sm?ple Efficiently rec.:luced to LP Automatically infers bounds on
operational semantics solving expected resource usage

Bounds are multivariate
symbolic polynomials

Enables compositional and
effective reasoning

Expected Potential Method

Expected potential method

* Associate potential functions to program points
- Function from states to non-negative values

* Potential pays the expected resource consumption
and the expected potential at the following point

*The initial potential is an upper bound on the
expected resource usage

P (state) > 0

®(state) > E(cost) + E(P' (next_state))

b (init_state)

>

l Total expectation and Iinearityl

2 (X cost)

Quantitative Hoare logic

D) 1D}

Quantitative Hoare logic

Expected cost [E(¢)

P 1D}

Quantitative Hoare logic

Expected cost [E(c¢)

Resource available before
executing c

Quantitative Hoare logic

Expected cost [E(c¢)

Resource available before
executing c

E(d’) is the expected resource
available after executing c

Quantitative Hoare logic

Expected cost [E(c)

Resource available before
executing c

E(d’) is the expected resource
available after executing c

For all states 0, ®(o) is sufficient to pay for the expected cost of executing ¢
and the expected resource available after the execution w.r.t the distribution
over next states

Example rules

(Q:PIF)
Q=p01+(1-p)0s F{T; 01}e1{T"; 0"} F{T; Q2}e2{T"; 0"}

- {T; QY1 @p c2{T";Q"}

(QISAMPLE) T ‘: R [Cl, b] Q — Zipi.Qi

Youi € [a, b].|uR : vil| = pi Vou;. - {T';0;}x = e bop v;{I'"; 0"}

- {T';O}x = e bop R{I'";Q"}

Example rules

(Q:PIF)
Q=p01+(1-p)0s F{T; 01}e1{T"; 0"} F{T; Q2}e2{T"; 0"}

- {T; QY1 @p c2{T";Q"}
Logical assertions

I'=Re€|a,b] Q= 2;pi-Qi
Vo; € [a,b].[pr :vi] =pi Voui. F {T;Qi}x = e bop v;{I'"’;Q"}

(Q:SAMPLE)

- {T';O}x = e bop R{I'";Q"}

Example rules

Potential functions
(Q:PIF)

Q=p01+(1-p)Oo F{T; 01}e1{T"; 0"} F{T; Q2}e2{T"; 0"}

- {T; Q}e1 ®p c2{T'"; Q"}
Logical assertions

' ERE|ab] Q= 2ipiQi
Youi € [a, b].|uR : vil| = pi Voi. - {I';Q;}x = e bop vi{l'"; 0"}
- {T';O}x = e bop R{I'";Q"}

(Q:SAMPLE)

Example rules

Encoded as linear constraints Potential functions
(Q:PIF)

Q=p01+(1-p) Oy F{T; 01}e1{T"; 0"} F{T; Q2}e2{T"; 0"}
- {T; Q}e1 ®p c2{T'"; Q"}

Logical assertions

(Q:SAMPLE) ['=Re [ab] 0=7Y.:p-0;

Youi € [a, b].|uR : vil| = pi Voi. - {I';Q;}x = e bop vi{l'"; 0"}
- {T';O}x = e bop R{I'";Q"}

Example rules

Encoded as linear constraints Potential functions
(Q:PIF)

Q=p01+(1-p) Oy F{T; 01}e1{T"; 0"} F{T; Q2}e2{T"; 0"}
- {T; Q}e1 ®p c2{T'"; Q"}

Logical assertions

(Q:SAMPLE) ['=Re [ab] 0=7Y.:p-0;

Youi € [a, b].|uR : vil| = pi Voi. - {I';Q;}x = e bop vi{l'"; 0"}

- {T';O}x = e bop R{I'";Q"}

Probability that the sample

value is v;

Example rules

Potential functions

Encoded as linear constraints

(Q:PIF)
Q=p01+(1-p) Oy F{T; 01}e1{T"; 0"} F{T; Q2}e2{T"; 0"}

- {T; Q}e1 ®p c2{T'"; Q"}

Logical assertions

(Q:SAMPLE) ['=Re [ab] 0=7Y.:p-0;

Youi € [a, b].|uR : vil| = pi Voi. - {I';Q;}x = e bop vi{l'"; 0"}

- {T';O}x = e bop R{I'";Q"}

Probability that the sample

: Distribution with finite domain
value is v;

Derivation: Random walk

while x < n:
prob(3,1):
X=X+1

else:

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

prob(3,1):
X=X+1

else:

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

prob(3,1):
X=X+1

else:

tick 1

t-52[xn]| 3

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

prob(3,1):
X=X+1
else:

X=X-1
f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

prob(3,1):
X=X+1

else:
{ x<n; 2|[x,n][+3}
X =X-1
f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

prob(3,1):

X =X+1

{ x<n; 2[[xon]| + 1}
else:

{ x<n; 2|[x,n]| +3}

X =X-1

f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

prob(3,1):

{X<n; ZI[X,ﬂ]I -1 }

X=X+1

{x<n; 2|[xn]| +1}
else:

{ x<n; 2|[x,n]| +3}

X=X-1

{x<n; 2|[xn]| +1}
tick 1

t-52[xn]| 3

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(0,n-x) = 2|[x,n]] while x < n:
{ x<n; 2[[x,n]] }
prob(3,1):
{X<n; ZI[X,ﬂ]I -1 }
X=X+ 1
{x<n; 2|[x,n]] +1)
else:
{ x<n; 2|[x,n][+3}
X =X-1
f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

Weighted sum:

tx<n; 2(Lon3 *(2|[x,n]] - 1) + 1/4*(2|[x,n]| +
prob(3,1): 3/4% (2][x,n]| - 1) + 1/4*(2][x,n]] + 3)
{ x<n; 2|[x,n]| -1}
X =X+1
§ x<n; 2|[x,n]| + 1}
else:
{x<n; 2|[x,n]| +3}
X =X-1
f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3

Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

Weighted sum:

PR R 4+ 2I[n]| - 1)+ 14*Cllxn]] + 3
{X<n; ZI[X)n]I -1 }
X=X+1

It is the exact expected cost { x<n; 2|[x,n]| +1}

else:
{ x<n; 2|[x,n][+3}
X =X-1
f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3

Automation

Automation

* Fix potential functions as linear combinations of monomials with unknown coefficients

Zkz“mz‘

1| x| M, M, | max(0,P)

oD .

M

Automation

* Fix potential functions as linear combinations of monomials with unknown coefficients

Zki'mi

1| x| M;-M,| max(0,P)

oD .

M

* Encode the relations between the potential functions at the current and next program points as
linear constraints

Automation

* Fix potential functions as linear combinations of monomials with unknown coefficients

Zki'mi

1| x| M;-M,| max(0,P)

oD .

M

* Encode the relations between the potential functions at the current and next program points as
linear constraints

» Obtain the optimal solution by solving the generated constraints with an off-the-shelf LP solver

Example: Bug’s life

i\
Cliff of Doom \

Pit of Disaster

Example: Bug’s life

Repeatedly hops 1inch to left or right
with equal probability

Cliff of Doom &3 0.5 0.5 Pit of Disaster

Example: Bug’s life

Repeatedly hops 1inch to left or right
with equal probability

Cliff of Doom 0.5 0.5 Pit of Disaster

whilen >0 && n < w:
prob(1,1):
nN=n+1
else:
n=n-1
tick 1

Example: Bug’s life

Repeatedly hops 1inch to left or right
with equal probability

Cliff of Doom (8 0.5 0.5 Pit of Disaster

while n > 0 && n < w:
prob(1,1):
nN=n+1
else:
n=n-1
tick 1

Cost = # hops

= Bug’s life

Example: Bug’s life

Repeatedly hops 1inch to left or right
with equal probability

Cliff of Doom

Cost = # hops

= Bug’s life

while n > 0 && n < w:
prob(1,1):
nN=n+1
else:
n=n-1
tick 1

Pit of Disaster

The expected life:

[o,n][* |[n,w]]

Derivation: Bug’s life

whilen > 0 && n < w:
prob(1,1):
N=n+1

else:

Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:
prob(1,1):
N=n+1

else:

tick 1

{.;inv(n,w)}

Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:
prob(1,1):
nN=n+1
else:
n=n-1
§.;inv(n,w) + 1}

tick 1

{.;inv(n,w)}

Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:
prob(1,1):
N=n+1

else:
£ o<n<w; inv(n-1,w) + 1}
n=n-1
§.;inv(n,w) + 1}

tick 1

{.;inv(n,w)}

Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:
prob(1,1):
N=n+1

else:
{ o<n<w; inv(n,w)-|[n,w]|+|[o,n]| }
nN=n-1
£.;inv(n,w) + 1}

tick 1

{.;inv(n,w)}

Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:
prob(1,1):

nN=n+1
{.;inv(nw) + 1}
else:
{ 0<n<w; inv(n,w)-[[n,w]|+|[o,n]| }
Nn=n-1
£.;inv(n,w) + 1}
tick 1

{.;inv(n,w)}

Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:

prob(1,1):
£ o<n<w; inv(n+1,w) + 1}
nN=n+1
{.;inv(nw) + 1}
else:
{ 0<n<w; inv(n,w)-|[n,w]|+|[o,n]| }
n=n-1
£.;inv(n,w) + 1}
tick 1

{.;inv(n,w)}

Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:

prob(1,1):
% O<n<w; inv(n,w)+|[n,w]|-|[[o,n] }
{.;inv(nw) + 1}

else:
{ o<n<w; inv(n,w)-{[n,w]l+[[0,n]| }
n=n-1
£.;inv(n,w) + 1}

tick 1

{.;inv(n,w)}

Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}
whilen >0 && n < w:
£ o<n<w; inv(n,w)
prob(1,1):
£ o<n<w; inv(n,w)+|[n,W]|-|[0,n]| }
nN=n+1
{.;inv(nw) + 1}
else:
{ o<n<w; inv(nw)|[n/wl[+|[o,n]| }
n=n-1
§.;inv(n,w) + 1}
tick 1

{.;inv(n,w)}

Weighted sum in which

terms are canceled out

Implementation: Absynth

 Accepts imperative (integer) probabilistic programs
e Infers multivariate polynomial bounds on the expected resource consumption

» Automatically analyzes 40 challenging probabilistic programs and randomized algorithms with
different looping patterns

e Statically derived bounds are compared with simulation-based expectations to show that
constant factors are very precise

Runtime (s)

/5

Programs

Experiments: Overview

o
oo

Percentage Error(%)
o)

Programs

Experiments: Overview

‘v 10
Nt
v
E
=
D:Cs 7.5 Derives bounds in less than
10 seconds for all programs
p
2.5 ?

Programs

5S¢ 0.8
N
—
O
-
—
LL]
g)D 0.6
(G
)
-
v
U
-
v
n 04
0.2 o

s J

Programs

Experiments: Overview

~ = 08 Errors between simulation-
wn 10 39 0. .
o %’ 49 based expectations and
= - derived bounds < 1% for
= : : L;' almost programs
2 75 Derives bounds in less than on 0.6
10 seconds for all programs g
O
0 0
5 . 0.4 j
2.5 0 0.2 0 é m
LTS S TR féjj

Programs Programs

Precise constant factors

* For example, figures show the constant factors in derived bounds for random walk and
polynomial programs are very precise

11000

10000 [

9000

8000

7000

ticks

6000

5000

4000

3000

2000 [~

1000

Candlestick ——
Measured expected # ticks : : : : : :
2x,nl — S L SEERT e 7

1000 1500 2000 2500 3000 3500 4000 4500 5000
n (x =0)

NG00
> 3 > X X
[W G G G N
OO00O

(o) JerNerJerie))

RO ———t
OO0
SOOO
SOOO
SOOO
o's'sls’s

50

51[s,i,S]1° + 10I[

el

Measured expected # ticks
SrminsSIN0,Sminll + 51[Simin,Sll

+

Precise constant factors

 For example, figures show the constant factors in derived bounds for random walk and
polynomial programs are very precise

Blue lines are plotting of

derived bounds

Measured expected # ticks

11000 a 2
Measured expe%%r:jdfﬁgﬁg E3 5 : : f ! SI[Smm,S]I * 1OI[Smm,S]”[O,Smm]| * 5|[Smm,3]|
10000 2|[X,Ij]| ----- ----------------- ---------------- ---------------- ------------------------- | (&
9000 |5+ N
6 _
1.8x1 06
8000 .. 1 .6X1 06 -
1 -‘qu 86 - o
2000 | TN 22X — i S
) 1x10° - -
ol 4T 800000 f
400000 [T i i i
BOOO | g T 200000 — £
0]
4000 b T
3000 F T
2000 [; ..
1000
1000 1500 2000 2500 3000 3500 4000 4500 5000

n (x = 0)

Precise constant factors

 For example, figures show the constant factors in derived bounds for random walk and

ticks

11000

10000 [

9000

8000

7000

6000

5000

4000

3000

2000 [~

1000

polynomial programs are very precise

Blue lines are plotting of

derived bounds

Candlestick —
Measured expected # ticks : : : : -
2xn)l — L o IETTET T I

1000 1500 2000 2500 3000 3500 4000 4500 5000
n (x =0)

51[s,i,S]1° + 10I[

Measured expected # ticks
SrminsSIN0,Sminll + 51[Simin,Sll

Red points are simulation-

N0
> > X X X
s e . .
OO0

(e)JerXerXerXe)

llllllllll
IIIIIIIIIIIIII
-y .."l il [

I|I %l?l.l I|.|:.l .I 'Tl,". I-ﬁ'

RO ———t
OO0
SOOO
SOOO
SOOO
o's'sls’s

‘‘‘‘‘‘‘‘‘

based values

‘‘‘‘‘

ki
B

‘i-;-—‘ ::::

|

Application: Tail-bound analysis

» Can be reduced to expected resource analysis using
concentration inequalities (e.g., Markov and Chebyshev’s
inequalities)

* Assert that resource usage is bounded with a high
probability

* Thus, they are good for analyzing safety properties of
programs

3500

3000 [

2500

2000 |

1500

L

1000 |

0
100

. Measured expected # ticks (200.807) —

[[[
Histogram (n = 100, # runs = 100000) -——
Inferred bound (202.0) — 7

0

200

|
250 300 400
ticks

Application: Tail-bound analysis

» Can be reduced to expected resource analysis using
concentration inequalities (e.g., Markov and Chebyshev’s
inequalities)

* Assert that resource usage is bounded with a high
probability

* Thus, they are good for analyzing safety properties of
programs

3500

3000 [

2500

2000 |

1500

1000 |

100

I I I
Histogram (n = 100, # runs = 100000) -——
. Measured expected # ticks (200.807) —
Inferred bound (202.0) — 7

|
0 200 250 300 400
ticks

Random walk example:

P(t > 10|[0, n]|)

<

) _ 2ol

10

[0,n]| — 10]{0, n]|

Summary

Summary

Contributions

Summary

Contributions

e First automatic analysis for deriving symbolic
bounds on the expected resource usage

 Practical implementation for imperative
(integer) probabilistic programs

Summary

Contributions Limitations

e First automatic analysis for deriving symbolic

* Non-polynomial bounds
bounds on the expected resource usage

. , , , e Discrete distributions with finite domains
 Practical implementation for imperative

(integer) probabilistic programs

Summary

Contributions Limitations

e First automatic analysis for deriving symbolic

* Non-polynomial bounds
bounds on the expected resource usage

. , , , e Discrete distributions with finite domains
 Practical implementation for imperative

(integer) probabilistic programs

Future work

e Lower bounds on the expected resource usage

* Tail-bound analysis with Chebyshev’s inequality

