
Bounded	Expectations:		
Resource	Analysis	for	Probabilistic	Programs

Van	Chan	Ngo						Quentin		Carbonneaux						Jan	Hoffmann

PL’17, January 01–03, 2017, New York, NY, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400

Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (200.807)

Inferred bound (202.0)

Figure 8. Comparison of automatically derived bounds with measured cost samples. On the left: histogram of the distribution
of #ticks for rdwalk with n = 100. On the right: The inferred bound on the expected #ticks (blue lines) compared to the
measured expected values for various input sizes (red crosses) for trader (at the center) and pol04 (on the right). In the latter,
the candlesticks represent the highest and lowest sampled values and the second and third quartile.

The decision to base our analysis on AARA is mainly mo-
tivated by the strong connection to existing techniques for
(manually) analyzing expected runtime (see next paragraph)
and the general advantages of AARA, including composition-
ality, tracking of amortization e�ects, �exible cost models,
and e�cient bound inference using LP solving.
We are only aware of few works that study the analysis

of expected resource usage of probabilistic programs. Chat-
terjee et al. [27] propose a technique for solving recurrence
relations that arise in the analysis of expected runtime cost.
Their technique can derive bounds of the formO(logn),O(n),
andO(n logn). Similarly, Flajolet et al. [35] describe an auto-
matic for average-case analysis that is based on generating
functions and that can be seen as a method for solving re-
currences. While these techniques apply to recurrences that
describe the resource usage of randomized algorithms, the
works do not propose a technique for deriving recurrences
from a program. It is therefore not a push-button analysis
for probabilistic programs but complementary to our work
since they can derive logarithmic bounds.

Analysis of probabilistic programs. Considering work on
analyzing probabilistic programs, most closely related is a
recent line of work by Kaminski et al. [60, 76]. The goal of
this work is to characterize the expected runtime of proba-
bilistic programs. However, they use a WP calculus to derive
pre-expectations and do not consider any automation. The
technique can be seen as a generalization of quantitative
Hoare logic [17, 19] for AARA to the probabilistic setting
but does not provide support for automatic reasoning. In
fact, when attempting to generalize AARA to probabilistic
programs we were �rst unaware of the existing work and
rediscovered some of the proof rules. Our contributions are
new specialized proof rules that allow for automation using
LP solving and a prototype implementation of the new tech-
nique. While our soundness proof is original, it leverages the
proof by Kaminski et al. by relying on the soundness of the
rules for weakest preconditions.
The use of pre-expectations for reasoning about proba-

bilistic programs dates back to the pioneering work of Kozen

and others [20, 64, 69]. It has been automated using con-
straint generation [62] and abstract interpretation [23] to
derive quantitative invariants. However, it is unclear how
to use them to automatically derive symbolic (polynomial)
bounds like in our work.
Another body of research relies probabilistic pushdown

automata and martingale theory to analyze the termination
time [15] and the expected number of steps [33]. The use of
martingale theory to automatically analyze probabilistic pro-
grams has been pioneered in [22]. While their technique also
relies on linear constraints, it is proving almost-sure termina-
tion instead of resource bounds and relies on Farka’s lemma.
More general methods [25] are able to synthesize polynomial
ranking-supermartingales for proving termination.
Abstract interpretation has also been applied to proba-

bilistic programs [29, 70, 71] but we are not aware of its
application to derive bounds on the expected resource us-
age. Another approach to automatically analyze probabilistic
programs is based on symbolic inference [38] and analyzing
execution paths with statistical techniques [14, 39, 78]. In
the context of analyzing di�erential privacy, there are works
with limited automation that focus on deriving bounds on
the privacy budget for probabilistic programs [10, 46].

9 Conclusion
We have introduced a new technique for automatically infer-
ring polynomial bounds on the expected resource consump-
tion of probabilistic programs. The technique is a combina-
tion of existing manual quantitative reasoning for probabilis-
tic programs and an automatic worst-case bound analysis for
deterministic programs. The e�ectiveness of the technique
is demonstrated with an implementation and the automatic
analysis of challenging examples from previous work.
In the future, we plan to study how to build on the intro-

duced technique to automatically derive tail bounds, that is,
worst-case bounds that hold with high probability. We are
also working on a more direct soundness argument that also
works for non-monotone resources. Finally, we plan to build
on Resource Aware ML [49] to apply the expected potential
method to (higher-order) functional programs.

12

Histogram:	1D	random	walk	 Drunk	painting:	2D	random	walks
Credited	to	Evan	X.	Merz

Static	resource	analysis

Given: A	program	P

Question: What	is	the	amount	of	resource	as	
function	of	the	inputs	sizes	that	is	
required	to	execute	P?

Static	resource	analysis

Given: A	program	P

Question: What	is	the	amount	of	resource	as	
function	of	the	inputs	sizes	that	is	
required	to	execute	P?

Time,	memory,	or	energy

Static	resource	analysis

Given: A	program	P

Question: What	is	the	amount	of	resource	as	
function	of	the	inputs	sizes	that	is	
required	to	execute	P?

Goal: To	help	developers	answer	this	question	
as	an	analysis	of	the	programming	
language	support

Time,	memory,	or	energy

Static	resource	analysis

Techniques

Recurrence	Relations

Type	Systems

Abstract	Interpretation

Term	Rewriting

Ranking	Functions

Automatic	Amortized	Resource	
Analysis

Given: A	program	P

Question: What	is	the	amount	of	resource	as	
function	of	the	inputs	sizes	that	is	
required	to	execute	P?

Goal: To	help	developers	answer	this	question	
as	an	analysis	of	the	programming	
language	support

Time,	memory,	or	energy

Static	resource	analysis

Techniques

Recurrence	Relations

Type	Systems

Abstract	Interpretation

Term	Rewriting

Ranking	Functions

Automatic	Amortized	Resource	
Analysis

Given: A	program	P

Question: What	is	the	amount	of	resource	as	
function	of	the	inputs	sizes	that	is	
required	to	execute	P?

Goal: To	help	developers	answer	this	question	
as	an	analysis	of	the	programming	
language	support

Time,	memory,	or	energy

Worst-case	
resource	usage

Probabilistic	programs

•Are	usual	functional	or	imperative	programs	with	two	added	constructs:	

- Sampling	assignments	to	draw	values	at	random	from	probability	distributions,	and		

- Probabilistic	branchings	to	control	program	flow	by	observations

Probabilistic	programs

•Are	usual	functional	or	imperative	programs	with	two	added	constructs:	

- Sampling	assignments	to	draw	values	at	random	from	probability	distributions,	and		

- Probabilistic	branchings	to	control	program	flow	by	observations

“The	crux	of	probabilistic	programming	is	to	consider	normal-looking	programs	as	if	they	were	
probability	distributions”

Hicks	2014

Probabilistic	programs

•Are	usual	functional	or	imperative	programs	with	two	added	constructs:	

- Sampling	assignments	to	draw	values	at	random	from	probability	distributions,	and		

- Probabilistic	branchings	to	control	program	flow	by	observations

•Some	probabilistic	programming	languages:	Probabilistic	C,	Church,	PyMC3,	Figaro,	Edward

“The	crux	of	probabilistic	programming	is	to	consider	normal-looking	programs	as	if	they	were	
probability	distributions”

Hicks	2014

Example:	Random	walk

n

0.750.25

x x+1x-1

Example:	Random	walk

n

0.750.25

x x+1x-1

Current	
position

Example:	Random	walk

n

0.750.25

x x+1x-1

Current	
position

Boundary

Example:	Random	walk

n

0.750.25

x x+1x-1

				while	x	<	n:	
								prob(3,1):	
												x	=	x	+	1							
								else:	
												x	=	x	-	1	
								tick	1

Current	
position

Boundary

Example:	Random	walk

n

0.750.25

x x+1x-1

				while	x	<	n:	
								prob(3,1):	
												x	=	x	+	1							
								else:	
												x	=	x	-	1	
								tick	1

Current	
position

Boundary

Cost	=	#	iterations		
												=	walking	time

Example:	Random	walk

n

0.750.25

x x+1x-1

				while	x	<	n:	
								prob(3,1):	
												x	=	x	+	1							
								else:	
												x	=	x	-	1	
								tick	1

Current	
position

Boundary

Cost	=	#	iterations		
												=	walking	time

•The	worst-case	cost	is	infinite	

- It	does	not	make	sense	to	reason.about

Example:	Random	walk

n

0.750.25

x x+1x-1

				while	x	<	n:	
								prob(3,1):	
												x	=	x	+	1							
								else:	
												x	=	x	-	1	
								tick	1

Current	
position

Boundary

Cost	=	#	iterations		
												=	walking	time

•The	worst-case	cost	is	infinite	

- It	does	not	make	sense	to	reason.about

•It	is	better	to	reason	about:	

- The	expected	value	of	the	cost,	or		

- The	probability	that	the	cost	is	bounded	by	a	threshold

Example:	Random	walk

n

0.750.25

x x+1x-1

				while	x	<	n:	
								prob(3,1):	
												x	=	x	+	1							
								else:	
												x	=	x	-	1	
								tick	1

Current	
position

Boundary

Cost	=	#	iterations		
												=	walking	time

•The	worst-case	cost	is	infinite	

- It	does	not	make	sense	to	reason.about

•It	is	better	to	reason	about:	

- The	expected	value	of	the	cost,	or		

- The	probability	that	the	cost	is	bounded	by	a	threshold

This	talk:	automatic	bounds	
on	the	expected	cost

Why	expected	resource	usage?

Why	expected	resource	usage?

There	are	many	interesting	applications:	

•Predict	the	expected	resource	usage	of	sampling	in	probabilistic	inference	

•Reason	about	the	average-case	complexity	of	randomized	algorithms,	positive	and	almost-
sure	terminations

Why	expected	resource	usage?

It	is	a	technical	challenge	problem:	

•	Manual	analysis	is	often	difficult	or	impossible	even	for	simple	programs	(e.g.,	requires	
probability	theory	knowledge,	mathematic	reasoning,	…)	

•No	techniques	that	automatically	infer	symbolic	bounds	on	the	expected	cost

There	are	many	interesting	applications:	

•Predict	the	expected	resource	usage	of	sampling	in	probabilistic	inference	

•Reason	about	the	average-case	complexity	of	randomized	algorithms,	positive	and	almost-
sure	terminations

Approach:	Expected	potential	method

Weakest	Pre-expectation	
Calculus

Strength	and	conceptual	
simplicity

Soundness	w.r.t	a	simple	
operational	semantics

Automatic	Amortized	
Resource	Analysis

Template-based	bound	
inference

Efficiently	reduced	to	LP	
solving

Expected	Potential	Method

Kozen	(’81),	McIver	et	al	
(’04),	Kaminski	et	al	(’16)

Hofmann	and	Jost	(’03)

Approach:	Expected	potential	method

Weakest	Pre-expectation	
Calculus

Strength	and	conceptual	
simplicity

Soundness	w.r.t	a	simple	
operational	semantics

Automatic	Amortized	
Resource	Analysis

Template-based	bound	
inference

Efficiently	reduced	to	LP	
solving

Expected	Potential	Method

Automatically	infers	bounds	on	
expected	resource	usage

Bounds	are	multivariate	
symbolic	polynomials

Enables	compositional	and	
effective	reasoning

Kozen	(’81),	McIver	et	al	
(’04),	Kaminski	et	al	(’16)

Hofmann	and	Jost	(’03)

Expected	potential	method

•Associate	potential	functions	to	program	points	

- Function	from	states	to	non-negative	values	

•Potential	pays	the	expected	resource	consumption	
and	the	expected	potential	at	the	following	point	

•The	initial	potential	is	an	upper	bound	on	the	
expected	resource	usage

�(state) � E(cost) + E(�0(next state))

Total	expectation	and	linearity

�(init state) � E(⌃cost)

�(state) � 0

Quantitative	Hoare	logic

{Φ′�}{Φ} c

Quantitative	Hoare	logic

{Φ′�}
Expected	cost	𝔼(c)

{Φ} c

Quantitative	Hoare	logic

{Φ′�}
Expected	cost	𝔼(c)

{Φ}
Resource	available	before	
executing	c c

Quantitative	Hoare	logic

{Φ′�}
Expected	cost	𝔼(c)

is	the	expected	resource	
available	after	executing	c

𝔼(Φ′�)

{Φ}
Resource	available	before	
executing	c c

Quantitative	Hoare	logic

{Φ′�}
Expected	cost	𝔼(c)

is	the	expected	resource	
available	after	executing	c

𝔼(Φ′�)

{Φ}
Resource	available	before	
executing	c c

σ Φ(σ)For	all	states					,													is	sufficient	to	pay	for	the	expected	cost	of	executing		c		
and	the	expected	resource	available	after	the	execution	w.r.t	the	distribution	
over	next	states

Example	rules

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

Example	rules

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

Logical	assertions

Example	rules

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

Logical	assertions

Potential	functions

Example	rules

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

Encoded	as	linear	constraints

Logical	assertions

Potential	functions

Example	rules

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

Probability	that	the	sample	
value	is	vi

Encoded	as	linear	constraints

Logical	assertions

Potential	functions

Example	rules

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Van Chan Ngo,�entin Carbonneaux, and Jan Ho�mann

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

(Q:W�����)
� |= �0 Q ⌫� Q0 ` {�0;Q0}c{�00 ;Q

0
0} �00 |= �0 Q

0
0 ⌫�00

Q
0

` {�;Q}c{�0;Q 0}

(V����C��)
P : (�;Q, �0;Q 0) 2 �) � ` {�;Q}D(P) {�0;Q 0}

` �

(Q:A�����)

` {�;Q} assert e {� ^ e;Q}

(Q:T���)

` {�;Q} tick (q) {�;Q � q}

(Q:N��D��)
` {�;Q}c1{�0;Q 0} ` {�;Q}c2{�0;Q 0}

` {�;Q} if ? c1 else c2 {�0;Q 0}

(Q:I�)
` {� ^ e;Q}c1{�0;Q 0} ` {� ^ ¬e;Q}c2{�0;Q 0}

` {�;Q} if e c1 else c2 {�0;Q 0}

(Q:L���)
` {� ^ e;Q}c{�;Q}

` {�;Q} while e c {� ^ ¬e;Q}

(Q:PI�)
Q = p·Q1 + (1 � p)·Q2 ` {�;Q1}c1{�0;Q 0} ` {�;Q2}c2{�0;Q 0}

` {�;Q}c1 �p c2{�0;Q 0}

(Q:S��)
` {�;Q}c1{�0;Q 0} ` {�0;Q 0}c2{�00;Q 00}

` {�;Q}c1; c2{�00;Q 00}

(Q:A�����)
A = (ai, j) 8j 2 Sx=e .bj [e/x] =

Õ
i ai, j · bi 8j < Sx=e . ai, j = 0 8j < Sx=e .q0j = 0 Q = AQ

0

` {�[e/x];Q}x = e{�;Q 0}

(Q:S���)

` {�;Q} skip {�;Q}

(Q:S�����)
� |= R 2 [a,b] 8�i 2 [a,b].JµR : �i K = pi 8�i . ` {�;Qi }x = e bop �i {�0;Q 0} Q =

Õ
i pi ·Qi

` {�;Q}x = e bop R{�0;Q 0}

(Q:A����)

` {�; 0} abort {�0;Q 0}

(Q:C���)
P : (�;Q, �0;Q 0) 2 � x 2 Q�0
` {�;Q + x} call P {�0;Q 0 + x}

(R����)
F = (F1, . . . , FN) Æu = (u1, . . . ,uN)| 8i .� |= �Fi � 0 8i .ui � 0 Q

0 = Q � F Æu
Q ⌫� Q

0

Figure 5. Inference rules of the derivation system.

For potential annotations Q , Q 0 and ⇧ 2 {<,=, . . .}, the
relationQ ⇧Q 0 means that their components are constrained
point-wise, that is,

”
i qi ⇧ q0i . Additionally, we write Q ± c

where c 2 Q to denote the annotation Q
0 obtained from Q

by setting the coe�cient q0i of the base function 1 to qi ± c

and leaving the other coe�cients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {�;Q}c{�0;Q 0}
has two extra implicit assumptions: Q ⌫� 0 and Q

0 ⌫�0 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⌫� in the next section.

4.3 Inference rules
Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:T��� is the only one that accounts for the e�ect
of consuming resources. The tick command does not change
the program state, so we require the logical context � in the
pre- and postcondition to be the same. Let c 0 be a command
with an expected resource bound �Q 0 = �Q � q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c 0 is exactly �Q 0 + q = �Q .
The rule Q:PI� accounts for probabilistic branching. Let

c
0 be a continuation command with an expected resource

bound �Q 0 , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 �p c2); c 0 is
Tc = p · (T1 +�Q 0 + (1�p) · (T2 +�Q 0). Using the hypothesis
triples for c1 and c2, we haveTc  p ·�Q1 + (1�p)�Q2 = �Q .
The second probabilistic rule Q:S����� deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
branches contains an assignment x = x bop � with � 2 Z
and is executed with probability p, the probability of the
event R = � . The preconditions of each of the branches are
combined like in the Q:PI� rule.

The rules Q:A����� and Q:W����� are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:A�����
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If �Q 0 is a bound
on the expected cost of c 0, then �Q 0[e/x] is the expected
resource bound of x = e; c 0 To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we �nd all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j)i 2 Q such that bj [e/x] =

Õ
i ai, j · bi . That means

Distribution	with	finite	domain
Probability	that	the	sample	
value	is	vi

Encoded	as	linear	constraints

Logical	assertions

Potential	functions

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	
{	.	;	2|[x,n]|	}

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	
{	.	;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	
{	.	;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

{	x<n;	2|[x,n]|	+	3	}

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	
{	.	;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

{	x<n;	2|[x,n]|	+	3	}

{	x<n;	2|[x,n]|	+	1	}

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	
{	.	;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

{	x<n;	2|[x,n]|	+	3	}

{	x<n;	2|[x,n]|	-	1	}

{	x<n;	2|[x,n]|	+	1	}

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	
{	.	;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

{	x<n;	2|[x,n]|	+	3	}

{	x<n;	2|[x,n]|	-	1	}

{	x<n;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	
{	.	;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

{	x<n;	2|[x,n]|	+	3	}

{	x<n;	2|[x,n]|	-	1	}

{	x<n;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

Weighted	sum:		
3/4*	(2|[x,n]|	-	1)	+	1/4*(2|[x,n]|	+	3)

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

Derivation:	Random	walk

				while	x	<	n:	

								prob(3,1):	

												x	=	x	+	1							

								else:	

												x	=	x	-	1	

								tick	1	
{	.	;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

{	x<n;	2|[x,n]|	+	3	}

{	x<n;	2|[x,n]|	-	1	}

{	x<n;	2|[x,n]|	}

{	x<n;	2|[x,n]|	+	1	}

Weighted	sum:		
3/4*	(2|[x,n]|	-	1)	+	1/4*(2|[x,n]|	+	3)

{	.	;	2|[x,n]|	}Bound	on	the	expected	
cost:	2max(0,n-x)	=	2|[x,n]|

It	is	the	exact	expected	cost

Automation

Automation

• Fix potential functions as linear combinations of monomials with unknown coefficients

Φ := ∑
i

ki ⋅ mi

M := 1 ∣ x ∣ M1 ⋅ M2 ∣ max(0,Φ)

Automation

• Encode the relations between the potential functions at the current and next program points as
linear constraints

• Fix potential functions as linear combinations of monomials with unknown coefficients

Φ := ∑
i

ki ⋅ mi

M := 1 ∣ x ∣ M1 ⋅ M2 ∣ max(0,Φ)

Automation

• Obtain the optimal solution by solving the generated constraints with an off-the-shelf LP solver

• Encode the relations between the potential functions at the current and next program points as
linear constraints

• Fix potential functions as linear combinations of monomials with unknown coefficients

Φ := ∑
i

ki ⋅ mi

M := 1 ∣ x ∣ M1 ⋅ M2 ∣ max(0,Φ)

Example:	Bug’s	life

w

Pit of Disaster0.5

n

0.5

0

Cliff of Doom

Example:	Bug’s	life

w

Pit of Disaster0.5

n

0.5

0

Cliff of Doom

Repeatedly	hops	1	inch	to	left	or	right	
with	equal	probability

Example:	Bug’s	life

w

Pit of Disaster0.5

n

0.5

0

Cliff of Doom

 while	n	>	0	&&	n	<	w:	
									prob(1,1):	
													n	=	n	+	1							
									else:	
													n	=	n	-	1	
									tick	1

Repeatedly	hops	1	inch	to	left	or	right	
with	equal	probability

Example:	Bug’s	life

w

Pit of Disaster0.5

n

0.5

0

Cliff of Doom

 while	n	>	0	&&	n	<	w:	
									prob(1,1):	
													n	=	n	+	1							
									else:	
													n	=	n	-	1	
									tick	1

Cost	=	#	hops		
										=	Bug’s	life

Repeatedly	hops	1	inch	to	left	or	right	
with	equal	probability

Example:	Bug’s	life

w

Pit of Disaster0.5

n

0.5

0

Cliff of Doom

 while	n	>	0	&&	n	<	w:	
									prob(1,1):	
													n	=	n	+	1							
									else:	
													n	=	n	-	1	
									tick	1

Cost	=	#	hops		
										=	Bug’s	life

The	expected	life:	
|[0,n]|	*	|[n,w]|

Repeatedly	hops	1	inch	to	left	or	right	
with	equal	probability

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	
{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	
{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

{	0<n<w;	inv(n-1,w)	+	1}

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	
{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

{	0<n<w;	inv(n,w)-|[n,w]|+|[0,n]|	}

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	
{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

{	0<n<w;	inv(n,w)-|[n,w]|+|[0,n]|	}

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	
{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

{	0<n<w;	inv(n+1,w)	+	1	}

{	0<n<w;	inv(n,w)-|[n,w]|+|[0,n]|	}

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	
{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

{	0<n<w;	inv(n,w)-|[n,w]|+|[0,n]|	}

{	0<n<w;	inv(n,w)+|[n,w]|-|[0,n]|	}

Derivation:	Bug’s	life

while	n	>	0	&&	n	<	w:	

				prob(1,1):	

								n	=	n	+	1							

				else:	

								n	=	n	-	1	

				tick	1	
{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)	+	1}

{	.	;	inv(n,w)}

{	.	;	inv(n,w)}

inv(n,w)	=	|[0,n]|*|[n,w]|

{	0<n<w;	inv(n,w)-|[n,w]|+|[0,n]|	}

{	0<n<w;	inv(n,w)+|[n,w]|-|[0,n]|	}

{	0<n<w;	inv(n,w)	}
Weighted	sum	in	which	
terms	are	canceled	out

Implementation:	Absynth

•Accepts	imperative	(integer)	probabilistic	programs	

•Infers	multivariate	polynomial	bounds	on	the	expected	resource	consumption	

•Automatically	analyzes	40	challenging	probabilistic	programs	and	randomized	algorithms	with	
different	looping	patterns	

•Statically	derived	bounds	are	compared	with	simulation-based	expectations	to	show	that	
constant	factors	are	very	precise

Experiments:	Overview

0

2.5

5

7.5

10

Programs

Ru
nt
im

e	
(s
)

0

0.2

0.4

0.6

0.8

Programs
Pe

rc
en

ta
ge

	E
rr
or

(%
)	

Experiments:	Overview

0

2.5

5

7.5

10

Programs

Ru
nt
im

e	
(s
)

0

0.2

0.4

0.6

0.8

Programs
Pe

rc
en

ta
ge

	E
rr
or

(%
)	

Derives	bounds	in	less	than	
10	seconds	for	all	programs

Experiments:	Overview

0

2.5

5

7.5

10

Programs

Ru
nt
im

e	
(s
)

0

0.2

0.4

0.6

0.8

Programs
Pe

rc
en

ta
ge

	E
rr
or

(%
)	 Errors	between	simulation-

based	expectations	and	
derived	bounds	<	1%	for	

almost	programs
Derives	bounds	in	less	than	
10	seconds	for	all	programs

Precise	constant	factors

•For	example,	figures	show	the	constant	factors	in	derived	bounds	for	random	walk	and	
polynomial	programs	are	very	precise

50 150 250 350 450 550 50
150

250
350

450

0
200000
400000
600000
800000
1x106

1.2x106
1.4x106
1.6x106
1.8x106

Measured expected # ticks
5|[smin,s]|

2 + 10|[smin,s]||[0,smin]| + 5|[smin,s]|

s
smin

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1000 1500 2000 2500 3000 3500 4000 4500 5000

#
tic
ks

n (x = 0)

Candlestick
Measured expected # ticks

2|[x,n]|

Precise	constant	factors

•For	example,	figures	show	the	constant	factors	in	derived	bounds	for	random	walk	and	
polynomial	programs	are	very	precise

50 150 250 350 450 550 50
150

250
350

450

0
200000
400000
600000
800000
1x106

1.2x106
1.4x106
1.6x106
1.8x106

Measured expected # ticks
5|[smin,s]|

2 + 10|[smin,s]||[0,smin]| + 5|[smin,s]|

s
smin

Blue	lines	are	plotting	of	
derived	bounds

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1000 1500 2000 2500 3000 3500 4000 4500 5000

#
tic
ks

n (x = 0)

Candlestick
Measured expected # ticks

2|[x,n]|

Precise	constant	factors

•For	example,	figures	show	the	constant	factors	in	derived	bounds	for	random	walk	and	
polynomial	programs	are	very	precise

50 150 250 350 450 550 50
150

250
350

450

0
200000
400000
600000
800000
1x106

1.2x106
1.4x106
1.6x106
1.8x106

Measured expected # ticks
5|[smin,s]|

2 + 10|[smin,s]||[0,smin]| + 5|[smin,s]|

s
smin

Blue	lines	are	plotting	of	
derived	bounds

Red	points	are	simulation-
based	values

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1000 1500 2000 2500 3000 3500 4000 4500 5000

#
tic
ks

n (x = 0)

Candlestick
Measured expected # ticks

2|[x,n]|

Application:	Tail-bound	analysis

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400

Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (200.807)

Inferred bound (202.0)

•Can	be	reduced	to	expected	resource	analysis	using	
concentration	inequalities	(e.g.,	Markov	and	Chebyshev’s	
inequalities)	

•Assert	that	resource	usage	is	bounded	with	a	high	
probability	

•Thus,	they	are	good	for	analyzing	safety	properties	of	
programs

Application:	Tail-bound	analysis

0

500

1000

1500

2000

2500

3000

3500

100 150 200 250 300 350 400

Fr
eq
ue
nc
y

ticks

Histogram (n = 100, # runs = 100000)
Measured expected # ticks (200.807)

Inferred bound (202.0)

•Can	be	reduced	to	expected	resource	analysis	using	
concentration	inequalities	(e.g.,	Markov	and	Chebyshev’s	
inequalities)	

•Assert	that	resource	usage	is	bounded	with	a	high	
probability	

•Thus,	they	are	good	for	analyzing	safety	properties	of	
programs

Random	walk	example:

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Bounded Expectations: Resource Analysis for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Then Markov’s inequality states that for all a > 0 the proba-
bility of |t | � a is bounded by the expectation of |t | divided
by a. Since t is non-negative we have

P(t � a)  E(t)
a

Therefore, by automatically deriving bounds on the expected
resource usage, we can bound the probability of a large devi-
ation from the expected resource consumption.
For example, consider the simple random walk from Sec-

tion 3.1 again with the initial value of x = n > 0. Then the
expected resource usage is bounded by 2|[0,n]|. Assume that
we want to bound the probability that the resource usage is
greater than 10|[0,n]|. Following the Markov inequality and
the derived bound, we have:

P(t � 10|[0,n]|)  E(t)
10|[0,n]| 

2|[0,n]|
10|[0,n]| = 0.2

Chebyshev’s inequality. If the resource usage t has �nite
expected value and �nite non-zero variance Var(t). Then for
all k 2 R such that k > 0, Chebyshev’s inequality implies

P(|t�E(t)| � a)  Var(t)
a2

=
E((t�E(t))2)

a2
=
E(t2) � E(t)2

a2
.

Hence, by deriving a lower bound ` on the resource usage t
and a upper bound u the squared expected resource usage
t
2, we get P(|t � E(t)| � a) = u�`2

a2 .
It is in general possible to derive such tail bounds with the

expected potential method. We can use a auxiliary variable
sqt to encode the square of resource usage, for example by
squaring the resource usage t at the exit point of the program.
While the potential method generally supports non-linear
arithmetic [54], this would have to be implemented with a
while loop in the current version of Absynth. Similarly, the
potential method can be used to derive lower bounds [76]
but this is not yet implemented in Absynth.
We leave a systematic study of deriving tail bounds with

the expected potential method for future work.

8 Implementation and experiments
In this section, we �rst describe the implementation of the
automatic analysis in the toolAbsynth. Then, we evaluate the
performance of our tool on a set of challenging examples.2

8.1 Implementation
Absynth is implemented in OCaml and consists of about
5000 LOC. The tool currently works on imperative integer
programs written in a Python-like syntax that supports re-
cursive procedures. It also has a C interface based on LLVM.
Currently, Absynth supports four common distributions:
Bernoulli, binomial, hyper-geometric, and uniform. How-
ever, there are no limitations to the distributions that can be
supported as long as they have a �nite domain.
2The source code of the examples, Absynth, the experiments, and the
simulation-based comparison have been submitted as auxiliary material.

Potential functions. To discovery the bounds on expected
resource usage automatically, in this work, we focus on in-
ferring polynomial potential functions that are linear com-
binations of base functions picked among the monomials.
Formally, they are de�ned by the following syntax.

M := 1 | x | M1·M2 | |[0, P]| x 2 VID
P := k ·M | P1+P2 k 2 Q

Generating base and rewrite functions. Our analysis can
work with every set of base functions. While it would be
possible to to �x a set of functions once and for all as in
previous work on resource analysis [20, 49], we found that it
is more e�ective to select the base functions for each program
using a heuristic [19].
At each program point, the abstract interpretation (AI)

used in Absynth to infer logical contexts derives linear in-
equalities between program variables. The linear inequalities
of the form

Õ
i ai ·xi +b � 0, where ai ,b 2 Q, are used to gen-

erate a set of base functions. One can use a more complex and
powerful AI such as the Apron library [60]. In practice, we
found that our simple AI is su�cient to infer many bounds
and provides good performance. For example, if the AI de-
rives n � x � 1 � 0 at one program point, then the heuristic
will add themonomials |[0,n � x]| and |[0,n � x � 1]| as base
functions. Higher-degree base functions can be constructed
by considering successive powers and products of simpler
base functions, e.g., degree 2 base functions |[0,n � x]|2 and
|[0,n � x � 1]| · |[0,n � x]|.
Given the set of base functions at a program point, they

are used to generate a set of rewrite functions, in which
a Presburger decision procedure is used to reason about
the non-negativity of rewrite functions. Recall that a rewrite
function is a linear combination of base functions of the formÕ

i ki ·bi , where ki 2 Q. The set of rewrite functions allow to
transfer potential to and from the base functions following
the inference rule Q:W�����. For instance, for the base
functions |[0,n � x]| and |[0,n � x � 1]|, the heuristic adds
the linear combination F = |[0,n � x]| � |[0,n � x � 1]| � 1
as a rewrite function. As shown in Figure 7, F can be used for
an assignment x = x +1when n�x > 0 to turn the potential
|[0,n � x]| into |[0,n � x]|+1, e�ectively extracting one unit
of constant potential.

whi l e (x<n) {
{ |[0, n � x] | } �
{ |[0, n � x � 1] |+1}
x = x + 1 ;
{ |[0, n � x] |+1}

}

Figure 7. Rewriting func-
tion example.

User interaction. Occasion-
ally, when a program re-
quires a complex potential
transformation, our heuristic
might not be sophisticated
enough to identify an appro-
priate set of rewrite func-
tions. In this case, the user
can manually specify a set of
rewrite functions as hints to be used by the analysis. These
hints, in contrast with typical assertions, have no runtime

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Bounded Expectations: Resource Analysis for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Then Markov’s inequality states that for all a > 0 the proba-
bility of |t | � a is bounded by the expectation of |t | divided
by a. Since t is non-negative we have

P(t � a)  E(t)
a

Therefore, by automatically deriving bounds on the expected
resource usage, we can bound the probability of a large devi-
ation from the expected resource consumption.
For example, consider the simple random walk from Sec-

tion 3.1 again with the initial value of x = n > 0. Then the
expected resource usage is bounded by 2|[0,n]|. Assume that
we want to bound the probability that the resource usage is
greater than 10|[0,n]|. Following the Markov inequality and
the derived bound, we have:

P(t � 10|[0,n]|)  E(t)
10|[0,n]| 

2|[0,n]|
10|[0,n]| = 0.2

Chebyshev’s inequality. If the resource usage t has �nite
expected value and �nite non-zero variance Var(t). Then for
all k 2 R such that k > 0, Chebyshev’s inequality implies

P(|t�E(t)| � a)  Var(t)
a2

=
E((t�E(t))2)

a2
=
E(t2) � E(t)2

a2
.

Hence, by deriving a lower bound ` on the resource usage t
and a upper bound u the squared expected resource usage
t
2, we get P(|t � E(t)| � a) = u�`2

a2 .
It is in general possible to derive such tail bounds with the

expected potential method. We can use a auxiliary variable
sqt to encode the square of resource usage, for example by
squaring the resource usage t at the exit point of the program.
While the potential method generally supports non-linear
arithmetic [54], this would have to be implemented with a
while loop in the current version of Absynth. Similarly, the
potential method can be used to derive lower bounds [76]
but this is not yet implemented in Absynth.
We leave a systematic study of deriving tail bounds with

the expected potential method for future work.

8 Implementation and experiments
In this section, we �rst describe the implementation of the
automatic analysis in the toolAbsynth. Then, we evaluate the
performance of our tool on a set of challenging examples.2

8.1 Implementation
Absynth is implemented in OCaml and consists of about
5000 LOC. The tool currently works on imperative integer
programs written in a Python-like syntax that supports re-
cursive procedures. It also has a C interface based on LLVM.
Currently, Absynth supports four common distributions:
Bernoulli, binomial, hyper-geometric, and uniform. How-
ever, there are no limitations to the distributions that can be
supported as long as they have a �nite domain.
2The source code of the examples, Absynth, the experiments, and the
simulation-based comparison have been submitted as auxiliary material.

Potential functions. To discovery the bounds on expected
resource usage automatically, in this work, we focus on in-
ferring polynomial potential functions that are linear com-
binations of base functions picked among the monomials.
Formally, they are de�ned by the following syntax.

M := 1 | x | M1·M2 | |[0, P]| x 2 VID
P := k ·M | P1+P2 k 2 Q

Generating base and rewrite functions. Our analysis can
work with every set of base functions. While it would be
possible to to �x a set of functions once and for all as in
previous work on resource analysis [20, 49], we found that it
is more e�ective to select the base functions for each program
using a heuristic [19].
At each program point, the abstract interpretation (AI)

used in Absynth to infer logical contexts derives linear in-
equalities between program variables. The linear inequalities
of the form

Õ
i ai ·xi +b � 0, where ai ,b 2 Q, are used to gen-

erate a set of base functions. One can use a more complex and
powerful AI such as the Apron library [60]. In practice, we
found that our simple AI is su�cient to infer many bounds
and provides good performance. For example, if the AI de-
rives n � x � 1 � 0 at one program point, then the heuristic
will add themonomials |[0,n � x]| and |[0,n � x � 1]| as base
functions. Higher-degree base functions can be constructed
by considering successive powers and products of simpler
base functions, e.g., degree 2 base functions |[0,n � x]|2 and
|[0,n � x � 1]| · |[0,n � x]|.
Given the set of base functions at a program point, they

are used to generate a set of rewrite functions, in which
a Presburger decision procedure is used to reason about
the non-negativity of rewrite functions. Recall that a rewrite
function is a linear combination of base functions of the formÕ

i ki ·bi , where ki 2 Q. The set of rewrite functions allow to
transfer potential to and from the base functions following
the inference rule Q:W�����. For instance, for the base
functions |[0,n � x]| and |[0,n � x � 1]|, the heuristic adds
the linear combination F = |[0,n � x]| � |[0,n � x � 1]| � 1
as a rewrite function. As shown in Figure 7, F can be used for
an assignment x = x +1when n�x > 0 to turn the potential
|[0,n � x]| into |[0,n � x]|+1, e�ectively extracting one unit
of constant potential.

whi l e (x<n) {
{ |[0, n � x] | } �
{ |[0, n � x � 1] |+1}
x = x + 1 ;
{ |[0, n � x] |+1}

}

Figure 7. Rewriting func-
tion example.

User interaction. Occasion-
ally, when a program re-
quires a complex potential
transformation, our heuristic
might not be sophisticated
enough to identify an appro-
priate set of rewrite func-
tions. In this case, the user
can manually specify a set of
rewrite functions as hints to be used by the analysis. These
hints, in contrast with typical assertions, have no runtime

Summary

Summary

Contributions

Summary

•First	automatic	analysis	for	deriving	symbolic	
bounds	on	the	expected	resource	usage	

•Practical	implementation	for	imperative	
(integer)	probabilistic	programs

Contributions

Summary

•First	automatic	analysis	for	deriving	symbolic	
bounds	on	the	expected	resource	usage	

•Practical	implementation	for	imperative	
(integer)	probabilistic	programs

Contributions Limitations

•Non-polynomial	bounds	

•Discrete	distributions	with	finite	domains

Summary

•First	automatic	analysis	for	deriving	symbolic	
bounds	on	the	expected	resource	usage	

•Practical	implementation	for	imperative	
(integer)	probabilistic	programs

Contributions Limitations

•Non-polynomial	bounds	

•Discrete	distributions	with	finite	domains

Future	work

•Lower	bounds	on	the	expected	resource	usage	

•Tail-bound	analysis	with	Chebyshev’s	inequality

