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Given: A program P Techniques

Time, memory, or energy

Recurrence Relations

Question: What is the amount of resource as

function of the inputs sizes that is Type Systems

required to execute P?

Abstract Interpretation

Goal: To help developers answer this question
as an analysis of the programming

Term Rewriting

language support
guage supp Ranking Functions

Worst-case

resource usage Automatic Amortized Resource
Analysis
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Probabilistic programs

* Are usual functional or imperative programs with two added constructs:
- Sampling assignments to draw values at random from probability distributions, and

- Probabilistic branchings to control program flow by observations

“The crux of probabilistic programming is to consider normal-looking programs as if they were
P prog & g Prog y
probability distributions”

e Some probabilistic programming languages: Probabilistic C, Church, PyM(3, Figaro, Edward
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Example: Random walk

0.75

| | | | ’

X-1 X X+1 N
Boundary

Current  The worst-case cost is infinite

position

- It does not make sense to re

while x < n:
prob(3,1):
X=X+1
else:
X=X-1
tick 1

This talk: automatic bounds
e |t is better to reason about: on the expected cost

- The expected value of the cost, or
Cost = # iterations
SWEIShegilnlsy - The probability that the cost is bounded by a threshold
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Why expected resource usage?

There are many interesting applications:
* Predict the expected resource usage of sampling in probabilistic inference

* Reason about the average-case complexity of randomized algorithms, positive and almost-
sure terminations

It is a technical challenge problem:

« Manual analysis is often difficult or impossible even for simple programs (e.g., requires
probability theory knowledge, mathematic reasoning, ... )

* No techniques that automatically infer symbolic bounds on the expected cost
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Approach: Expected potential method

Kozen (’81), Mclver et al

Hofmann and Jost (’03)

(’04), Kaminski et al (’16)

Weakest Pre-expectation Automatic Amortized
Calculus Resource Analysis
Strength and conceptual Template-based bound
simplicity inference
Soundne.ess w.r.t a sm?ple Efficiently rec.:luced to LP Automatically infers bounds on
operational semantics solving expected resource usage

Bounds are multivariate
symbolic polynomials

Enables compositional and
effective reasoning

Expected Potential Method




Expected potential method

* Associate potential functions to program points
- Function from states to non-negative values

* Potential pays the expected resource consumption
and the expected potential at the following point

*The initial potential is an upper bound on the
expected resource usage

P (state) > 0

®(state) > E(cost) + E(P' (next_state))

b (init_state)

>

l Total expectation and Iinearityl

2 (X cost)
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Quantitative Hoare logic

Expected cost [E(c)

Resource available before
executing c

E(d’) is the expected resource
available after executing c

For all states 0, ®(o) is sufficient to pay for the expected cost of executing ¢
and the expected resource available after the execution w.r.t the distribution
over next states
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Potential functions
(Q:PIF)
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Logical assertions
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Example rules

Potential functions

Encoded as linear constraints

(Q:PIF)
Q=p01+(1-p) Oy F{T; 01}e1{T"; 0"} F{T; Q2}e2{T"; 0"}

- {T; Q}e1 ®p c2{T'"; Q"}

Logical assertions

(Q:SAMPLE) ['=Re [ab] 0=7Y.:p-0;

Youi € [a, b].|uR : vil| = pi Voi. - {I';Q;}x = e bop vi{l'"; 0"}

- {T';O}x = e bop R{I'";Q"}

Probability that the sample

: Distribution with finite domain
value is v;
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cost: 2max(o,n-x) = 2|[x,n]| while x < n:

prob(3,1):
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tick 1
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Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

prob(3,1):

{X<n; ZI[X,ﬂ]I -1 }

X=X+1

{x<n; 2|[xn]| +1}
else:

{ x<n; 2|[x,n]| +3}

X=X-1

{x<n; 2|[xn]| +1}
tick 1
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Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(0,n-x) = 2|[x,n]] while x < n:
{ x<n; 2[[x,n]] }
prob(3,1):
{X<n; ZI[X,ﬂ]I -1 }
X=X+ 1
{x<n; 2|[x,n]] +1)
else:
{ x<n; 2|[x,n][ +3}
X =X-1
f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3




Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

Weighted sum:

tx<n; 2(Lon3 *(2|[x,n]] - 1) + 1/4*(2|[x,n]| +
prob(3,1): 3/4% (2][x,n]| - 1) + 1/4*(2][x,n]] + 3)
{ x<n; 2|[x,n]| -1}
X =X+1
§ x<n; 2|[x,n]| + 1}
else:
{x<n; 2|[x,n]| +3}
X =X-1
f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3




Derivation: Random walk

Bound on the expected {£.;2|[x,n]|}
cost: 2max(o,n-x) = 2|[x,n]| while x < n:

Weighted sum:

PR R 4+ 2I[n]| - 1)+ 14*Cllxn]] + 3
{X<n; ZI[X)n]I -1 }
X=X+1

It is the exact expected cost { x<n; 2|[x,n]| +1}

else:
{ x<n; 2|[x,n][ +3}
X =X-1
f x<n; 2|[x,n]| + 1}
tick 1

t-52[xn]| 3




Automation



Automation

* Fix potential functions as linear combinations of monomials with unknown coefficients

Zkz“mz‘

1| x| M, M, | max(0,P)

oD .

M



Automation

* Fix potential functions as linear combinations of monomials with unknown coefficients

Zki'mi

1| x| M;-M,| max(0,P)

oD .

M

* Encode the relations between the potential functions at the current and next program points as
linear constraints



Automation

* Fix potential functions as linear combinations of monomials with unknown coefficients

Zki'mi

1| x| M;-M,| max(0,P)

oD .

M

* Encode the relations between the potential functions at the current and next program points as
linear constraints

» Obtain the optimal solution by solving the generated constraints with an off-the-shelf LP solver
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Repeatedly hops 1inch to left or right
with equal probability

Cliff of Doom (8 0.5 0.5 Pit of Disaster

while n > 0 && n < w:
prob(1,1):
nN=n+1
else:
n=n-1
tick 1

Cost = # hops

= Bug’s life




Example: Bug’s life

Repeatedly hops 1inch to left or right
with equal probability

Cliff of Doom

Cost = # hops

= Bug’s life

while n > 0 && n < w:
prob(1,1):
nN=n+1
else:
n=n-1
tick 1

Pit of Disaster

The expected life:

[o,n][* |[n,w]]
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{.;inv(n,w)}

whilen > 0 && n < w:
prob(1,1):
N=n+1

else:
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tick 1

{.;inv(n,w)}
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inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:
prob(1,1):
N=n+1

else:
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nN=n-1
£.;inv(n,w) + 1}

tick 1
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inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:
prob(1,1):

nN=n+1
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else:
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tick 1
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{.;inv(nw) + 1}
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Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}

whilen > 0 && n < w:

prob(1,1):
% O<n<w; inv(n,w)+|[n,w]|-|[[o,n] }
{.;inv(nw) + 1}

else:
{ o<n<w; inv(n,w)-{[n,w]l+[[0,n]| }
n=n-1
£.;inv(n,w) + 1}

tick 1

{.;inv(n,w)}




Derivation: Bug’s life

inv(n,w) = |[o,n][*|[n,w]|

{.;inv(n,w)}
whilen >0 && n < w:
£ o<n<w; inv(n,w)
prob(1,1):
£ o<n<w; inv(n,w)+|[n,W]|-|[0,n]| }
nN=n+1
{.;inv(nw) + 1}
else:
{ o<n<w; inv(nw)|[n/wl[+|[o,n]| }
n=n-1
§.;inv(n,w) + 1}
tick 1

{.;inv(n,w)}

Weighted sum in which

terms are canceled out




Implementation: Absynth

 Accepts imperative (integer) probabilistic programs
e Infers multivariate polynomial bounds on the expected resource consumption

» Automatically analyzes 40 challenging probabilistic programs and randomized algorithms with
different looping patterns

e Statically derived bounds are compared with simulation-based expectations to show that
constant factors are very precise
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Precise constant factors

* For example, figures show the constant factors in derived bounds for random walk and
polynomial programs are very precise
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Precise constant factors

 For example, figures show the constant factors in derived bounds for random walk and
polynomial programs are very precise
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 For example, figures show the constant factors in derived bounds for random walk and
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Application: Tail-bound analysis

» Can be reduced to expected resource analysis using
concentration inequalities (e.g., Markov and Chebyshev’s
inequalities)

* Assert that resource usage is bounded with a high
probability

* Thus, they are good for analyzing safety properties of
programs
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Application: Tail-bound analysis

» Can be reduced to expected resource analysis using
concentration inequalities (e.g., Markov and Chebyshev’s
inequalities)

* Assert that resource usage is bounded with a high
probability

* Thus, they are good for analyzing safety properties of
programs
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Summary

Contributions Limitations

e First automatic analysis for deriving symbolic

* Non-polynomial bounds
bounds on the expected resource usage

. , , , e Discrete distributions with finite domains
 Practical implementation for imperative

(integer) probabilistic programs

Future work

e Lower bounds on the expected resource usage

* Tail-bound analysis with Chebyshev’s inequality



