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Abstract

This paper presents a new static analysis for deriving upper
bounds on the expected resource consumption of probabilis-
tic programs. The analysis is fully automatic and derives
symbolic bounds that are multivariate polynomials in the
inputs. The new technique combines manual state-of-the-
art reasoning techniques for probabilistic programs with an
effective method for automatic resource-bound analysis of
deterministic programs. It can be seen as both, an extension
of automatic amortized resource analysis (AARA) to prob-
abilistic programs and an automation of manual reasoning
for probabilistic programs that is based on weakest precondi-
tions. An advantage of the technique is that it combines the
clarity and compositionality of a weakest-precondition calcu-
lus with the efficient automation of AARA. As a result, bound
inference can be reduced to off-the-shelf LP solving in many
cases and automatically-derived bounds can be interactively
extended with standard program logics if the automation
fails. Building on existing work, the soundness of the analy-
sis is proved with respect to an operational semantics that is
based on Markov decision processes. The effectiveness of the
technique is demonstrated with a prototype implementation
that is used to automatically analyze 39 challenging proba-
bilistic programs and randomized algorithms. Experiments
indicate that the derived constant factors in the bounds are
very precise and even optimal for some programs.
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1 Introduction

Probabilistic programming [67, 84] is an increasingly popu-
lar technique for implementing and analyzing Bayesian Net-
works and Markov Chains [43], randomized algorithms [9],
cryptographic constructions [11], and machine-learning al-
gorithms [42]. Compared with deterministic programs, rea-
soning about probabilistic programs adds additional com-
plexity and challenges. As a result, there is a renewed inter-
est in developing automatic and manual analysis and veri-
fication techniques that help programmers to reason about
their probabilistic code. Examples of such developments are
probabilistic program logics [21, 63, 67, 72, 83], automatic
probabilistic invariant generation [23, 26], abstract inter-
pretation for probabilistic programs [30, 73, 74], symbolic
inference [40], and probabilistic model checking [64].
One important property that is often part of the formal

and informal analysis of programs is resource bound analysis:
What is the amount of resources such as time, memory or
energy that is required to execute a program? Over the past
decade, the programming language community has devel-
oped numerous tools that can be used to (semi-)automatically
derive non-trivial symbolic resource bounds for impera-
tive [17, 47, 66, 87] and functional programs [7, 33, 55, 92].
Existing techniques for resource bound analysis can be

applied to derive bounds on theworst-case resource consump-
tion of probabilistic programs. However, if the control-flow
is influenced by probabilistic choices then a worst-case anal-
ysis is often not applicable because there is no such upper
bound. Consider the example trader(smin ,s) in Figure 1(a)
that implements a 1-dimensional random walk to model the
fluctuations of a stock price s. With probability 1

4 the price in-

creases by 1 point and with probability 3
4 the price decreases

by 1 point. After every price change, a trader performs an
action trade(s)Ðlike buying 10 sharesÐthat can depend on
the current price until the stock price falls to smin . In the
worst case, s will be incremented in every loop iteration and
the loop will not terminate. However, the loop terminates
with probability 1 or almost surely [36].
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vo id t r a d e r ( i n t smin , i n t s ) {

assume ( smin >=0 ) ;

wh i l e ( s > smin ) {

s= s +1 ⊕ 1
4

s=s −1 ;

t r a d e ( s ) ;

}

}
(a)

vo id t r a d e ( i n t s ) {

i n t nShares ;

nShares = un i f ( 0 , 1 0 ) ;

wh i l e ( nShares >0 ) {

nShares =nShares −1 ;

c o s t = c o s t + s ;

}

}
(b)

Figure 1. (a) A 1-dimensional random walk that models
the progression of a stock price that is incremented with
probability 1

4 and decremented with probability 3
4 while it is

greater than smin. (b) A trader that decides to buy between 0
and 10 shares by sampling from a uniform distribution. The
program cost is modeled by the global variable cost.

While almost sure termination is a useful property, we
might be also interested in the distribution of the number

of loop iterations or, considering a different resource, in the

spending of our trader. The distribution of the spending de-
pends of course on the implementation of the auxiliary func-
tion trade(). In general, it is not straightforward to derive
such distributions, even for relatively simple programs. Con-
sider for example the implementation of trade() in Figure 1(b).
It models a trader that randomly buys between 0 and 10
shares according to a uniform distribution. It is not immedi-
ately clear what the distribution of the cost is.
In this article, we are introducing a new method for au-

tomatically deriving bounds on the expected resource con-
sumption of probabilistic programs. Such bounds can be
directly used to predict the amount of resources required to
sample from a probabilistic program. Moreover, bounds on
the expected resource usage can also be used to derive tail
bounds on the resource usage using Markov’s inequality or
Chebyshev’s inequality (see Section 7).
For example, given the function trade(smin ,s), our tech-

nique automatically derives the bound 2·max(0, s−smin) on
the expected number of loop iterations. For the total spend-
ing of the trader, we automatically derive the bound

5·|[smin , s]| + 10·|[smin , s]|·|[0, smin]| + 5·|[smin , s]|
2

on the expected value of the variable cost in less than 4.6 sec-
onds. Here, wewrite |[a,b]| formax(0,b−a). Both bounds are
tight in the sense that they precisely describe the expected
resource consumption.
Our technique derives symbolic polynomial bounds and

generates certificates that are derivations in a quantitative
program logic [63, 83]. To the best of our knowledge, we
present the first fully automatic analysis for deriving sym-
bolic bounds on the expected resource consumption of proba-
bilistic programs with probabilistic branchings and sampling
from discrete distributions. It is also one of the few tech-
niques that can automatically derive polynomial properties.
Different resource metrics can be defined either by using a
resource-counter variable or by using tick commands. The

analysis is compositional, automatically tracks size changes,
and derives whole program bounds. Note that derived time
bounds also imply positive termination [36], that is, termi-
nation with bounded expected runtime. Compositionality
is particularly tricky for probabilistic programs since the
composition of two positively terminating programs is not a
positively terminating in general. While we focus on bounds
on the expected cost, the analysis can also be used to derive
worst-case bounds. Moreover, we can adapt the analysis (fol-
lowing [76]) to also derive lower bounds on the expected
resource usage.

Resource bound analysis and static analysis of probabilis-
tic programs have developed largely independently. The key
insight of our work is that there are close connections be-
tween (manual) quantitative reasoning methods for proba-
bilistic programs and automatic resource analyses for deter-
ministic programs. Our novel analysis combines probabilistic
quantitative reasoning using a weakest precondition (WP)
calculus [21, 63, 72, 83] with an automatic resource analy-
sis method that is known as automatic amortized resource
analysis (AARA) [18, 20, 51, 55], while preserving the best
properties of both worlds. On the one hand, we have the
strength and conceptual simplicity of the WP calculus. On
the other hand, we get template-based bound inference that
can be efficiently reduced to off-the-shelf LP solving.
We implemented our analysis in the tool Absynth. We

currently support imperative integer programs that features
procedures, recursion, and loops. We have performed an
evaluation with 39 probabilistic programs and randomized
algorithms that include examples from the literature and new
challenging benchmarks. To determine the precision of the
analysis, we compared the statically-derived bounds with the
experimentally-measured resource usage for different inputs
derived by sampling. Our experiments show that we often
derive bounds with very precise constant factors and that
bound inference usually only takes seconds. In summary, we
make the following contributions.

• We describe the first automatic analysis that derives
symbolic bounds on the expected resource usage of
probabilistic programs.

• We prove the soundness of the method by showing
that a successful bound analysis produces derivations
in a probabilistic WP calculus [83].

• We show the effectiveness of the technique with a pro-
totype implementation and by successfully analyzing
39 examples from a new benchmark set and from pre-
vious work on probabilistic programs and randomized
algorithms.

The advantages of our technique are compositionality, effi-
cient reduction of bound inference to LP solving, and com-
patibility with manual bound derivation in the WP calculus.
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2 Probabilistic Programs

In this section, we first recall some essential concepts and
notations from probability theory that are used in this paper.
We then present the syntax of our imperative probabilistic
programming language.

2.1 Essential Notions and Concepts

The interested readers can find more detailed descriptions
in standard textbooks [5].

Probability Space. Consider a random experiment. The set
Ω of all possible outcomes is called the sample space. A prob-

ability space is a triple (Ω,F ,P), where F is a σ -algebra of
Ω and P is a probability measure for F , that is, a function
from F to the closed interval [0, 1] such that P(Ω) = 1 and
P(A ∪ B) = P(A) + P(B) for all disjoint sets A,B ∈ F . The
elements of F are called events. A function f : Ω → Ω

′ is
measurable w.r.t F and F ′ if f −1(B) ∈ F for all B ∈ F ′.

Random Variable. A random variable X is a measurable
function from a probability space (Ω,F ,P) to the real num-
bers, e.g., it is a functionX : Ω → R∪{−∞,+∞} such that for
every Borel set B ∈ B, X−1(B) := {ω ∈ Ω |X (ω) ∈ B} ∈ F .
Then the function µX (B) = P(X

−1(B)), called probability dis-
tribution, is a probability measure for B and (R,B, µX ) is a
probability space. If µX measures on a countable set of reals,
or the range ofX is countable, thenX is called a discrete ran-
dom variable. If µX gives zero measure to every singleton set,
then X is called a continuous random variable. The distribu-
tion µX is often characterized by the cumulative distribution

function defined by FX (x) = P(X ≤ x) = µX ((−∞,x]).

Expectation. The expected value of a discrete random vari-
able X is the weighted average E(X ) :=

∑
xi ∈RX xiP(X = xi ),

where RX is the range of X . To emphasize the distribution
µX , we often write EµX (X ) instead of E(X ). An important
property of the expectation is linearity. If X and X ′ are ran-
dom variables and λ, µ ∈ R then Y = λX + µX ′ is a random
variable and E(Y ) = λE(X ) + µE(X ′).

2.2 Syntax of Probabilistic Programs

The probabilistic programming language we use is a simple
imperative integer language structured into expressions and
commands. The abstract syntax is given by the grammar in
Figure 2. The command id = e bop R, where R is a (discrete)
random variable whose probability distribution is µR (written
as R ∼ µR ), is a random sampling assignment. It first samples
according to the distribution µR to obtain a sample value
and then evaluates the expression in which R is replaced by
the sample value. Finally, the evaluated value is assigned
to the variable id . The command c1 ⊕p c2 is a probabilistic
branching. It executes the command c1 with probability p, or
the command c2 with probability (1 − p).

The command if ⋆ c1 else c2 is a non-deterministic choice
between c1 and c2. The command call P makes a (possibly

e := id | n | e1 bop e2
c := skip | abort | assert e | tick (q) | id = e

| id = e bop R | if e c1 else c2 | if ⋆ c1 else c2
| c1 ⊕p c2 | c1; c2 | while e c | call P

bop := + | − | ∗ | div | mod | == | <> | > | < | <= | . . .

R ∼ µR (probability distribution)

Figure 2. Abstract syntax of the probabilistic language.

recursive) call to the procedure with identifier P ∈ PID . In
this article, we assume that procedures only manipulate the
global program state. Thus, we avoid to use local variables,
arguments, and return commands for passing information
across procedure calls. However, we support local variables
and return commands in the implementation. Arguments,
can be easily simulated by using global variables as registers.

We include the built-in primitive assert e that terminates
the program if the expression e evaluates to 0 and does noth-
ing otherwise. The primitive tick(q) , where q ∈ Q≥0 is used
to model resource usage of commands and thus to define the
cost model. As we have seen in the introduction, we can also
derive bounds on regular variables.

A program is a pair (c,D), where c ∈ C is the body of the
main procedure andD : PID → C is a map from procedure
identifiers to their bodies. A command with no procedure
calls is called closed command.

3 Expected Resource Bound Analysis

In this section, we show informally how automatic amor-
tized resource analysis (AARA) [19, 51, 55] can be gener-
alized to compute upper bounds on the expected resource
consumption of probabilistic programs. We first illustrate
with a classic analysis of a one-dimensional random walk
how developers currently analyze the expected resource us-
age. We then recap AARA for imperative programs [19, 20].
Finally, we explain the new concept of the expected potential
method that we develop in this work and apply it to our
random walk and more challenging examples.

3.1 Manual Analysis of a Simple RandomWalk

Consider the following implementation of a random walk.

whi l e ( x >0 ) { x=x−1 ⊕ 3
4

x=x +1 ; t i c k ( 1 ) ; }

The traditional way to analyze this program is using re-
currence relations. Let T (n) be the expected runtime of the
program when x is initially n. By expected runtime we mean
the expected number of tick (1) statements executed. Then,
for all n ≥ 1, T (n) satisfies the following equation

T (n) = 1 +
3

4
T (n − 1) +

1

4
T (n + 1)

This is a recurrence relation of degree 3, but it can be solved
more easily by defining D(n) to beT (n)−T (n−1) and rewrit-
ing the equation as 3D(n) = 4+D(n+1). One systematic way
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to find solutions for this equation is to use the generating
function G(z) =

∑
n≥1 D(n)z

n . Writing D for D(1), we get

3G(z) = 4
∑
n≥1

zn +
1

z
G(z) − D =

4z

1 − z
+

1

z
G(z) − D

And thus, using algebra and generating functions, we have

G(z) =
∑
n≥1

(2 − D · 3n−1 + 2 · 3n−1)zn

To finish the reasoning, we have to find the constant D
using a boundary condition. It is clear thatT (0) = 0, because
the loop is never entered when the program is started with
x = 0. To find T (1), we observe that the program has to
first reach the state x = n − 1 to terminate with x = n.
Additionally, because each coin flip is independent of the
others, reaching n − 1 from n should take the same expected
time as reaching 0 from 1. Thus, T (n) = n · T (1) = n · D
and consequently D(n) = T (n) − T (n − 1) = D for n ≥ 1.
Therefore, we have D = 2 and T (n) = 2 · n.

There are several reasons why this classic method is hard
to automate. First, inferring the recurrence relations is not
always straightforward, for example, because of complex iter-
ation patterns. Additionally, it is difficult to formally prove a
correspondence between the program and the recurrence re-
lation. Second, the method for solving recurrence relations is
fragile. If the decrement is x = x −2 instead of x = x −1 then
the above boundary condition does not work anymore. More-
over, recurrence relations becomemore difficult to solve with
the use of bigger constants and multiple variables. Finally,
the classic method is not compositional. When programs
become larger, it does not provide a principled way to reason
independently on smaller components.

3.2 The Potential Method

It has been shown in the past decade that the potentialmethod

of amortized analysis provides an interesting alternative to
classic resource analysis with recurrence relations.
Assume that a program c executes with initial state σ to

final state σ ′ and consumesn resource units as defined by the
tick commands, denoted (c,σ ) ⇓n σ ′. The idea of amortized
analysis is to define a potential function Φ : Σ → Q≥0 that
maps program states to non-negative numbers and to show
that Φ(σ ) ≥ n for all σ such that (c,σ ) ⇓n σ ′.
To reason compositionally, we have to take into account

the state resulting from a program execution. We thus use
two potential functions Φ and Φ

′ that specify the available
potential before and after the execution, respectively. The
functions must satisfy the constraint Φ(σ ) ≥ n + Φ

′(σ ′)
for all states σ and σ ′ such that (c,σ ) ⇓n σ ′. Intuitively,
Φ(σ ) must be sufficient to pay for the resource cost of the
computation and for the potential Φ′(σ ′) on the resulting
state σ ′. Thus, if (σ , c1) ⇓n σ ′ and (σ ′, c2) ⇓m σ ′′, we have
Φ(σ ) ≥ n + Φ′(σ ′) and Φ

′(σ ′) ≥ m + Φ′′(σ ′′) and therefore
Φ(σ ) ≥ (n + m) + Φ

′′(σ ′′). Note that the initial potential

function Φ provides an upper bound on the resource con-
sumption of the whole program. What we have observed is
that, if we define {Φ}c{Φ′} to mean

∀σ n σ ′
. (σ , c) ⇓n σ ′

=⇒ Φ(σ ) ≥ n + Φ′(σ ′)

then the following familiar inference rule is valid.

{Φ}c1{Φ
′} {Φ′}c2{Φ

′′}

{Φ}c1; c2{Φ
′′}

(Q:Seq)

Other language constructs lead to rules for the potential
functions that look very similar to Hoare logic or effect sys-
tem rules. These rules enable reasoning about resource usage
in a flexible and compositional way, which, as a side effect,
produces a certificate for the derived resource bound.
The derivation of a resource bound using potential func-

tions is best explained by example. In the following deter-
ministic example, the worst-case cost can be bounded by
|[x ,y]| = max(0,y−x).

whi l e ( x<y ) { x=x +1 ; t i c k ( 1 ) ; }

To derive this bound, we start with the initial potential Φ0 =

|[x ,y]|, which we also use as the loop invariant. For the
loop body we have (like in Hoare logic) to derive a triple
{Φ0}x = x + 1; tick (1){Φ0}. We can only do so if we utilize
the fact that x < y at the beginning of the loop body. The
reasoning then works as follows. We start with the potential
|[x ,y]| and the fact that |[x ,y]| > 0 before the assignment.
If we denote the updated version of x after the assignment
by x ′ then the relation |[x ,y]| = |[x ′,y]| + 1 between the
potentials before and after the assignment holds. This means
that we have the potential |[x ,y]| + 1 before tick (1), which
consumes 1 resource unit. We end up with potential |[x ,y]|
after the loop body and have established the loop invariant.
This reasoning can be automated in three steps (also see

Section 5). First, we create a derivation with template poten-
tial functions that contain a priori unknown rational coeffi-
cients. Second, we use local inference rules to generate con-
straints on the coefficients. Third, we solve the constraints
with linear optimization and minimize the initial potential.

The use of the potential method is not in opposition to
recurrence solving. One possible view is that solutions to
recurrences are integrated with the local inference rules.
The advantages of the method are its compositionality, the
efficient reduction to LP solving, and the generation of proofs,
which can be easily checked by a separate tool.

3.3 The Expected Potential Method

Maybe surprisingly, the potential method of AARA can be
adapted to automatically derive upper bounds on the ex-
pected cost of probabilistic programs.
Like in the deterministic case, we would like to work

with triples of the form {Φ}c{Φ′} for potential functions
Φ,Φ′ : Σ → Q≥0 to ensure compositional reasoning. How-
ever, in the case of probabilistic programs we need to take
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{q:= T
pK1−(1−p)K2 }

{.;q · |[x,n+K1−1] | }

whi le ( x<n ) {

{x<n;T−q ·K1+q · |[x,n+K1−1] | }

x=x+K1

{x ≤n+K1−1;T+q · |[x,n+K1−1] | }

⊕p
{x<n;T+q ·K2+q · |[x,n+K1−1] | }

x=x−K2 ;

{x ≤n+K1−1;T+q · |[x,n+K1−1] | }

t i c k ( T ) ;

{x ≤n+K1−1;q · |[x,n+K1−1] | }

}

rdwalk
T

pK1−(1−p)K2 · |[x,n+K1−1] |

{.; 23 · |[x,n] |+2· |[y,m] | }

whi l e ( x+3<=n ) {

{x+3≤n; 23 · |[x,n] |+2· |[y,m] | }

i f ( y<m)

{y<m; 23 · |[x,n] |+2· |[y,m] | }

y=y+ un i f ( 0 , 1 ) ;

{y≤m; 2· 12+
2
3 · |[x,n] |+2· |[y,m] | }

e l s e

{x+3≤n; 23 · |[x,n] |+2· |[y,m] | }

x=x+ un i f ( 0 , 3 ) ;

{x ≤n; 23 ·
3
2+

2
3 · |[x,n] |+2· |[y,m] | }

t i c k ( 1 ) ;

{x ≤n; 23 · |[x,n] |+2· |[y,m] | }

}

rdspeed
2
3 · |[x,n] |+2· |[y,m] |

Figure 3. Derivations of bounds for single loop programs.

into account the expected value of the potential function
Φ
′ w.r.t the distribution of final states resulting from the

program execution. More precisely, the two functions must
satisfy the constraint

Φ(σ ) ≥ EJc,DK(σ )(cost) + EJc,DK(σ )(Φ
′)

for all program states σ . Here we write Jc,DK(σ ) to de-
note the probability distribution over the final states as
specified by the program (c,D) and initial state σ . Finally,
EJc,DK(σ )(cost) is the expected resource usage of executing
c from the initial state σ . The intuitive meaning is that the
potential Φ(σ ) is sufficient to pay for the expected resource
consumption of the execution from σ and the expected po-
tential with respect to the probability distribution over the
final states. Let Φ(σ ) ≥ EJc,DK(σ )(cost) + EJc,DK(σ )(Φ

′) and
Φ
′(σ ′

i ) ≥ EJc ′,DK(σ ′
i )
(cost) + EJc ′,DK(σ ′

i )
(Φ′′) for all sample

states σ ′
i from Jc,DK(σ ). Then we have for all states σ

Φ(σ ) ≥ EJc ;c ′,DK(σ )(cost) + EJc ;c ′,DK(σ )(Φ
′′)

Hence, the initial potential Φ gives an upper-bound on the
expected value of resource consumption of the sequence
c; c ′ like in the sequential version of potential-based reason-
ing. If we write {Φ}c{Φ′} to mean Φ(σ ) ≥ EJc,DK(σ )(cost) +
EJc,DK(σ )(Φ

′) for all program states σ then we have again the
familiar rule Q:Seq for compositional reasoning above.
Note that expected and worst-case resource consump-

tion are identical for deterministic programs. Therefore, the
expected potential method derives worst-case bounds for
deterministic programs.

Analyzing a RandomWalk. Using the expected potential
method simplifies the reasoning significantly and, as we
show in this article, can be automated using a template-based
approach and LP solving like in the deterministic case.

Consider the simple random walk from Section 3.1 again
whose expected resource usage is Φ(x) = 2|[0,x]|. This is
the potential that we have available before the loop and it
will also serve as a loop invariant. We have to prove that the

potential right after the probabilistic branching should be
2|[0,x]| + 1, to pay for the cost of the tick statement and to
restore the loop invariant. What remains to justify is how
the probabilistic branching turns the potential 2|[0,x]| into
2|[0,x]| + 1. To do so, we reason backwards independently
on the two branches. For each branch, what is the initial
potential required to ensure an exit potential of 2|[0,x]| + 1?
(i) The assignment x = x − 1 needs initial potential Φ1(x) =
2|[0,x]| − 1. Indeed if we write x ′ for the value of x after the
assignment then 2|[0,x]|−1 = 2|[0,x ′

+1]|−1 = 2|[0,x ′]|+1.
(ii) Similarly, the second branch needs the initial potential
Φ2(x) = 2|[0,x]| + 3. Intuitively, since we enter the first and
second branches with probabilities 3

4 and
1
4 , respectively, thus

the initial potential for the probabilistic branching should be
the weighted sum 3

4Φ1(x)+
1
4Φ2(x) = 2|[0,x]|. This reasoning

would restore the loop invariant and prove the desired bound.

General RandomWalk. Now consider the generalized ver-
sion rdwalk in Figure 3. It simulates a general one-dimensional

random walk [45] with arbitrary positive constantsK1,K2,T ,
and p. The expected number of loop iterations, and thus the
expected cost modeled by the command tick (T ), is bounded
iff (⋆) pK1−(1−p)K2>0. In this case, the expected distance
for łforward walkingž is bigger than the expected distance
for backward walking.
For the annotations in the figure, we use semicolons to

separate the logical assertions from the potential functions.
The analysis for this example is very similar to the simple
one. It is only valid when the condition (⋆) is satisfied since
the initial potential function would be negative otherwise. In
the implementation, the automatic analysis reports that no
bound can be found if the program does not satisfy this re-
quirement. Note that the classic method would be a lot more
complex in this more general case. Indeed, the degree of the
recurrence relation to solve would be K1+K2+1 and if K1>1
the boundary condition argument we gave in Section 3.1
would not be valid anymore.

3.4 Bound Derivations for Challenging Examples

We show how the expected potential method can derive
polynomial bounds for challenging probabilistic programs
with single, nested, and sequential loops, as well as proce-
dure calls (more examples are given in the TR [75]). All the
presented bounds are derived automatically by our tool Ab-
synth whose implementation and inference algorithm are
discussed in Sections 5 and 8.

Single Loops. Examples rdwalk and rdspeed in Figure 3 show
that our expected potential method can handle tricky iter-

ation patterns. Example rdwalk has already been discussed.
Example rdspeed is randomized version of the one from pa-
pers on worst-case bound analysis [20, 47]. The iteration
first increases y by 0 or 1 until it reaches m randomly ac-
cording to the uniform distribution. Then x is increased by
k ∈ [0, 3], which is sampled uniformly. Absynth derives the
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{.; 3320 · |[y,z] |+
3
20 · |[0,y] | }

whi le ( z−y >2 ) {

{y+2<z ; 0+ 33
20 · |[y,z] |+

3
20 · |[0,y] | }

y=y+b in ( 3 , 2 , 3 ) ;

{y≤z ; 3+ 33
20 · |[y,z] |+

3
20 · |[0,y] | }

t i c k ( 3 ) ;

{y≤z ; 3320 · |[y,z] |+
3
20 · |[0,y] | }

}

{y+2≥z ; 0+ 33
20 · |[y,z] |+

3
20 · |[0,y] | }

whi l e ( y >9 ) {

{y>9; −12 +
33
20 · |[y,z] |+

3
20 · |[0,y] | }

y=y−10

{y≥0; 1+ 33
20 · |[y,z] |+

3
20 · |[0,y] | }

⊕ 2
3

{y>9; 1+ 33
20 · |[y,z] |+

3
20 · |[0,y] | }

s k i p ;

{y≥0; 1+ 33
20 · |[y,z] |+

3
20 · |[0,y] | }

t i c k ( 1 ) ;

{y≥0; 3320 · |[y,z] |+
3
20 · |[0,y] | }

}

prseq

( 32+
3
20 )· |[y,z] |+

3
20 · |[0,y] |

{q:= |[0,smin] |+ |[smin,s] | }

t r a d e r ( i n t smin , i n t s ) {

{.; inv(s, smin)}

assume ( smin >=0 ) ;

{smin≥0; inv(s, smin)}

whi l e ( s > smin ) {

{smin≥0∧s>smin; 15+15·q+inv(s, smin)}

s= s +1

{smin≥0∧s≥smin; 5·q+inv(s, smin)}

⊕ 1
4

{smin≥0∧s>smin;−5−5·q+inv(s, smin)}

s=s −1 ;

{smin≥0∧s≥smin; 5·q+inv(s, smin)}

t r a d e ( s ) ;

{smin≥0; inv(s, smin)}

}

{smin≥0∧s≤smin; 0+inv(s, smin)}

}

trader

10 |[smin, s] | · |[0, smin] | + 10
( |[smin,s ]|

2

)
+

10 |[smin, s] |

{.; |[0,n] | · |[n,w ] | }

whi l e ( n>0 && n<w) {

{0<n<w ; |[0,n] | · |[n,w ] | }

{0<n<w ; |[0,n] | · |[n,w ] |

+ |[n,w ] |− |[0,n] | }

n=n+1

{1<n≤w ; |[0,n] | · |[n,w ] |+1}

⊕ 1
2

{0<n<w ; |[0,n] | · |[n,w ] |

− |[n,w ] |+ |[0,n] | }

n=n−1 ;

{0≤n<w−1; |[0,n] | · |[n,w ] |+1}

t i c k ( 1 ) ;

{0≤n≤w ; |[0,n] | · |[n,w ] | }

}

bug-life

|[0,n] | · |[n,w ] |

{.; 152 · |[0, n] | }

whi l e ( n >0 ) {

b = 1 ;

{ b=1; 15· |[0, b ] |+ 15
2 · |[0, n] |− 15

2 }

whi l e ( b > 0 ) {

{ b=1; 3+ 15
2 · |[0, n] |− 15

2 }

{ b =0 ; t i c k ( 3 ) }

{ b=0; 15· |[0, b ] |+ 15
2 · |[0, n] |− 15

2 }

⊕ 1
3

{ b=1; −32 +
45
2 +

15
2 · |[0, n] |− 15

2 }

{ b =1 ;

{ t i c k ( 5 ) ⊕ 1
2

t i c k ( 7 ) ; } }

{ b=1; 15· |[0, b ] |+ 15
2 · |[0, n] |− 15

2 }

}

{ b ≤0; 15· |[0, b ] |+ 15
2 · |[0, n] |− 15

2 }

⊕ 1
2

s k i p ;

{n>0; 152 · |[0, n] |− 15
2 }

n=n−1 ;

{n≥0; 152 · |[0, n] | }

}

miner
15
2 · |[0, n] |

Figure 4. Derivations of bounds on the expected value of ticks for probabilistic programs. Example prseq contains a sequential
loop so that the iterations of the second loop depend on the the first one. In the derivation of trader, the non-linear bound

inv(s, smin):=10|[smin, s]|·|[0, smin]|+10
( |[smin,s] |

2

)
+10|[smin, s]| on the global variable cost is derived. Example miner shows how

Boolean variables can be expressed and handled.

tight bound 2
3 ·|[x ,n]|+2·|[y,m]|. The derivation is similar to

the derivation of the bound for rdwalk. To reason about the
sampling construct, we consider the effect of all possible
samples on the potential function. With the same reasoning
for probabilistic branching, we then compute the weighted
sum on the resulting initial potentials where the weights are
assigned following the distribution. In some cases (like in
this one), it is sound to just replace the distribution with the
expected outcome. However, this does not work in general
since the resource consumption could depend on the sample
in a non-uniform way.

Nested and Sequential Loops. The examples in Figure 4
show how the expected potential method can effectively han-
dle interacting nested, sequential loops, and procedure calls
to effectively derive polynomial bounds. The example prseq
shows the capability of the expected potential method to
take into account the interactions between sequential loops
by deriving the expected value of the size changes of the
variables. In the first loop, the variable y is incremented by
sampling from a binomial distribution with parameters n = 3
and p = 2

3 . In the second loop,y is decreased by 10 with prob-

ability 2
3 or left unchanged otherwise. We accurately derive

the expected value of the size change ofy by transferring the
potential |[y,z]| to |[0,y]|. Example miner simulates a miner
who is trapped in a mine. The miner is sent to the mine for
n times independently, for each time, with probability 1

2 she
is trapped and with the same probability she is safe. When
she is trapped, there are 3 doors in the mine for using. The

first door leads to a tunnel that will take her to safety after 3
hours (representing by 3 ticks ). The second door leads to a
tunnel that returns her to the mine after 5 hours. And the
third door leads to a tunnel that returns her to the mine after
7 hours. At all times, the miner is equally likely to choose
any one of the doors, meaning that she chooses any door
with equal probability 1

3 . This example demonstrates how
the analysis handles Boolean values (the variable b ) to get
the tight bound 15

2 ·|[0,n]| on the expected time. It assigns
the potential 15·|[0, b ]| to the variable b for paying the cost
of the inner loop, in which 15

2 ·|[0,n]|−
15
2 +15·|[0, b ]| is the

loop invariant.

Non-linear Bounds. Example bug-life simulates the tragic
life of an oblivious flea [2]. The flea starts at position 0 < n <

w inches and his life will end if he falls off the cliff of doom

(position 0) or falls into the pit of disaster (position w). He
repeatedly hops 1 inch to the right or 1 inch to the left with
equal probability, independently from the direction of all
previous hops. The derivation infers the tight boundn·(w−n)
on the expected number of hops he takes before falling off
the cliff or into the pit. When there is no pit of disaster,
the inferred value can be used to prove that the expected
lifespan of the flea is not bounded above. Thus, the flea is
certain to eventually fall of the cliff of doom but his expected
lifespan might be infinite. This demonstrates the soundness
property of our analysis, that is, if the expected runtime
can not be bounded above then the program might be not
positive termination. In the implementation, the bound for
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bug-life is inferred with user-provided rewrite functions as
hints.

Example trader has a non-linear bound that demonstrates
that our expected potential method can handle programs
with nested loops and procedure calls, which often have a
super-linear expected resource consumption. In the deriva-
tion inv(s, smin) acts as a loop invariant. We assume that
we already established the bound 5|[0, s]| = 5(|[0, smin]| +
|[smin, s]|) for the procedure trade(s). The crucial point for
understanding the derivation is the reasoning about the prob-
abilistic branching. First, observe that the weighted sum of
the two pre-potentials of the branches is equal to inv(s, smin)
if the weights are 1

4 and
3
4 . Second, verify that the post poten-

tial is equal to the potential in the respective pre-potential if
we substitute s + 1 (or s − 1) for s .

3.5 Limitations

Deriving symbolic resource bounds is an undecidable prob-
lem and our technique does not find bounds if loops and
recursive functions have complex control flow. Like every
static analysis we cannot prove facts that follow from math-
ematical insights like the existence of an infinite number of
primes. The current implementation in Absynth is limited to
polynomial bounds and linear size changes of loop counters.
However, this is not an inherent limitation of themethod [19].
Moreover, we only support sampling from discrete distribu-
tions with a finite domain. For instance, Absynth cannot find
a bound for the following program.

whi l e ( x >0 ) { x = x / 2 ; t i c k ( 1 ) ; }

In the technical development, we do not cover local vari-
ables and function arguments. However, local variables are
implemented in Absynth. While we conjecture that the tech-
nique also works for non-monotone resources like memory
that can become available during the evaluation, our current
meta-theory only covers monotone resources like time.

The set of programs forwhich the analysis can successfully
derive bounds depends on the base and rewrite functions
that are selected (see Section 5). A systematic description
of such sets is a separate research question that is closely
related to guarantees on the precision of the analysis.

4 Derivation System for Probabilistic
Quantitative Analysis

In this section, we describe the inference system used by
our analysis. It is presented like a program logic and enables
compositional reasoning. As we explain in Section 5, the
inference of a derivation can be reduced to LP solving.

4.1 Potential Functions

The main idea to automate resource analysis using the po-
tential method is to fix the shape of the potential functions.
More formally, potential functions are taken to be linear
combinations of more elementary base functions. Finding

the suitable base functions for a given program is discussed
in Section 8. For now we assume a given list of N base func-
tions. For convenience, they are represented as a vector
B = (b1, . . . ,bN ), where each bi : Σ → Q maps program
states to rational numbers. Building on base functions, a po-
tential function is defined by N coefficients q1, . . . ,qN ∈ Q

as Φ(σ ) =
∑N

i=1 qi · bi (σ ). The coefficients are written as a
vector Q = (q1, . . . ,qN ), called potential annotation. Each
potential annotation corresponds to a potential function ΦQ

that we can concisely express as the dot product ⟨Q · B⟩.
Note that potential annotations form a vector space. Ad-

ditionally, using the bi-linearity of the dot product, oper-
ations on the vector space of annotations correspond di-
rectly to operations on potential functions, that is ΦλQ+µQ ′ =

⟨λQ + µQ ′ · B⟩ = λ⟨Q · B⟩ + µ⟨Q ′ · B⟩ = λΦQ + µΦQ ′ . In the
following, we assume that the constant function 1 defined by
λσ .1 is in the list of base functions B. This way, the constant
potential function λσ .k can be represented with a poten-
tial annotation where the coefficient of 1 is k and all other
coefficients are 0.

4.2 Judgements

The main judgement of our inference system defines the
validity of a triple ⊢ {Γ,Q}c{Γ′,Q ′}. In the triple, c is a com-
mand, {Γ,Q} is the precondition, and {Γ′,Q ′} is the postcon-
dition. Γ is a logical context and Q is a potential annotation.
The logical context Γ ∈ P(Σ) is a predicate on program
states inferred by our implementation using abstract inter-
pretation. It describes a set of permitted states at a given
program point.
Leaving the logical contexts asideÐthey have the same

semantics as in Hoare logicÐa triple {·,Q}c{·,Q ′} expresses
that for any continuation command c ′ with expected cost
bounded by ΦQ ′ , the expected cost of the command c; c ′ is
bounded by ΦQ . When looking for the expected cost of the
command c , one can simply use skip as the command c ′ and
derive a triple where ΦQ ′ = 0. In that case, ΦQ is a bound on
the expected cost of the command c . To handle procedure
calls, the judgement for a triple uses a specification context

∆. This context assigns specifications to the procedures of
the program and permits a compositional analysis that also
handles recursive procedures. A specification is a valid pair
of pre- and post-conditions for the procedure body, denoted
∆ ⊢ {Γ;Q}D(P) {Γ′;Q ′}. The judgement ⊢ ∆, defined by the
rule ValidCtx, states that all the procedure specifications in
the context ∆ are valid, that is, the specifications are correct
pre- and post-conditions for the procedure bodies. Note that
a context ∆ can contain multiple specifications for the same
procedure. This enables a context-sensitive analysis.

Notations and Conventions. For a program state σ ∈ Σ

(e.g., a map from variable identifiers to integers), we write
JeKσ to denote the value of the expression e in σ and σ [v/x]
for the program state σ extended with the mapping of x to
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(Q:Weaken)

Γ |= Γ0 Q ⪰Γ Q0 ⊢ {Γ0;Q0}c{Γ
′
0 ;Q

′
0} Γ

′
0 |= Γ

′ Q ′
0 ⪰Γ

′
0
Q ′

⊢ {Γ;Q}c{Γ′;Q ′}

(ValidCtx)

P : (Γ;Q, Γ′;Q ′) ∈ ∆ ⇒ ∆ ⊢ {Γ;Q}D(P) {Γ′;Q ′}

⊢ ∆

(Q:Assert)

⊢ {Γ;Q} assert e {Γ ∧ e;Q}

(Q:Tick)

⊢ {Γ;Q} tick (q) {Γ;Q − q}

(Q:NonDet)

⊢ {Γ;Q}c1{Γ
′;Q ′} ⊢ {Γ;Q}c2{Γ

′;Q ′}

⊢ {Γ;Q} if ⋆ c1 else c2 {Γ
′;Q ′}

(Q:If)

⊢ {Γ ∧ e;Q}c1{Γ
′;Q ′} ⊢ {Γ ∧ ¬e;Q}c2{Γ

′;Q ′}

⊢ {Γ;Q} if e c1 else c2 {Γ
′;Q ′}

(Q:Loop)

⊢ {Γ ∧ e;Q}c{Γ;Q}

⊢ {Γ;Q} while e c {Γ ∧ ¬e;Q}

(Q:PIf)

Q = p·Q1 + (1 − p)·Q2 ⊢ {Γ;Q1}c1{Γ
′;Q ′} ⊢ {Γ;Q2}c2{Γ

′;Q ′}

⊢ {Γ;Q}c1 ⊕p c2{Γ
′;Q ′}

(Q:Seq)

⊢ {Γ;Q}c1{Γ
′;Q ′} ⊢ {Γ′;Q ′}c2{Γ

′′;Q ′′}

⊢ {Γ;Q}c1; c2{Γ
′′;Q ′′}

(Q:Assign)

A = (ai, j ) ∀j ∈ Sx=e .bj [e/x] =
∑
i ai, j · bi ∀j < Sx=e . ai, j = 0 ∀j < Sx=e .q

′
j = 0 Q = AQ ′

⊢ {Γ[e/x];Q}x = e{Γ;Q ′}

(Q:Skip)

⊢ {Γ;Q} skip {Γ;Q}

(Q:Sample)

Γ |= R ∈ [a,b] ∀vi ∈ [a,b].JµR : vi K = pi ∀vi . ⊢ {Γ;Qi }x = e bop vi {Γ
′;Q ′} Q =

∑
i pi ·Qi

⊢ {Γ;Q}x = e bop R{Γ′;Q ′}

(Q:Abort)

⊢ {Γ; 0} abort {Γ′;Q ′}

(Q:Call)

P : (Γ;Q, Γ′;Q ′) ∈ ∆ x ∈ Q≥0

⊢ {Γ;Q + x} call P {Γ′;Q ′
+ x}

(Relax)

F = (F1, . . . , FN ) ®u = (u1, . . . ,uN )⊺ ∀i .Γ |= ΦFi ≥ 0 ∀i .ui ≥ 0 Q ′
= Q − F ®u

Q ⪰Γ Q
′

Figure 5. Inference rules of the derivation system.

v . For a probability distribution µ , we use Jµ : vK to indicate
the probability that µ takes value v . We use Σ to denote
the set of program states. The entailment relation on logical
contexts Γ |= Γ

′ means that Γ is stronger than Γ
′. We write

σ |= Γ when σ ∈ Γ. For a proposition p, we write Γ |= p to
mean that any state σ such that σ |= Γ satisfies p. For an
expression e and a variable x , Γ ∧ e stands for the logical
context {σ | σ |= Γ ∧ JeKσ , 0} and Γ[e/x] stands for the
logical context {σ | σ [e/x] |= Γ}.
For potential annotations Q , Q ′ and ⋄ ∈ {<,=, . . .}, the

relationQ ⋄Q ′ means that their components are constrained
point-wise, that is,

∧
i qi ⋄ q

′
i . Additionally, we write Q ± c

where c ∈ Q to denote the annotation Q ′ obtained from Q

by setting the coefficient q′i of the base function 1 to qi ± c

and leaving the other coefficients unchanged.
Finally, because potential functions always have to be

non-negative, any rule that derives a triple {Γ;Q}c{Γ′;Q ′}
has two extra implicit assumptions: Q ⪰Γ 0 and Q ′ ⪰Γ′ 0.
The fact that these assumptions imply the non-negativity of
the potential functions becomes clear when we explain the
meaning of ⪰Γ in the next section.

4.3 Inference Rules

Figure 5 gives the complete set of rules. We informally de-
scribe some important rules and justify their validity. Sec-
tion 6 gives details about the formal soundness proof.

The ruleQ:Tick is the only one that accounts for the effect
of consuming resources. The tick command does not change
the program state, so we require the logical context Γ in the
pre- and postcondition to be the same. Let c ′ be a command
with an expected resource bound ΦQ ′ = ΦQ − q. Because
the cost of tick (q) is exactly q resource units, the expected
resource bound of tick (q); c ′ is exactly ΦQ ′ + q = ΦQ .
The rule Q:PIf accounts for probabilistic branching. Let

c ′ be a continuation command with an expected resource
bound ΦQ ′ , T1 and T2 be the resource usage of executing c1
and c2, respectively. Then by the linearity of the expectations,
the expected resource bound of the command (c1 ⊕p c2); c

′ is
Tc = p · (T1 +ΦQ ′ + (1−p) · (T2 +ΦQ ′). Using the hypothesis
triples for c1 and c2, we haveTc ≤ p ·ΦQ1 + (1−p)ΦQ2 = ΦQ .
The second probabilistic rule Q:Sample deals with sam-

pling assignments. Recall that R is a random variable follow-
ing a distribution µR . The essence of the rule is that, since
we assumed that R is bounded, we can treat a sampling as-
signment as a (nested) probabilistic branching. Each of the
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branches contains an assignment x = x bop v with v ∈ Z
and is executed with probability p, the probability of the
event R = v . The preconditions of each of the branches are
combined like in the Q:PIf rule.

The rules Q:Assign and Q:Weaken are similar to the ones
of a previous implementation of AARA for the analysis of
non-probabilistic programs [19] but have been adapted to
our structured probabilistic language. In the rule Q:Assign
for x = e , we represent the state transformation as a lin-
ear transformation on potential functions. If ΦQ ′ is a bound
on the expected cost of c ′, then ΦQ ′[e/x] is the expected
resource bound of x = e; c ′ To encode this constraint as a
linear program (this is necessary to enable automation using
LP solving), we find all the stable base functions, denoted
Sx=e , that is, all the base functions bj for which there ex-
ists (ai, j )i ∈ Q such that bj [e/x] =

∑
i ai, j · bi . That means

a function is stable if its extending with the mapping of
x to e can be represented by the set of base functions. Fi-
nally, to ensure that the transformation w.r.t the assignment
x = e on the potential function ΦQ ′ is linear, we require that
all the base functions that are not stable have their coeffi-
cients set to 0 in Q ′. With these constraints, we have that
ΦQ ′[e/x] = ΦAQ ′ = ΦQ where A is the (N×N ) matrix with
coefficients (ai, j ), hence justifying the validity.
The essence of the Q:Weaken is that it is always safe to

add potential in the precondition and remove potential in
the postcondition. This concept of more (or less) potential
is made precise by the predicate Q ⪰Γ Q ′. Semantically,
Q ⪰Γ Q

′ encodesÐusing linear constraintsÐthe fact that in
all states σ |= Γ, we have ΦQ ′(σ ) ≥ ΦQ (σ ) (see the TR [75]
for details). The Relax rule uses rewrite functions (Fi )i , as
introduced in [19]. Rewrite functions are linear combinations
of base functions that can be proved to be non-negative in
the logical context Γ. Using rewrite functions, the idea of the
judgement Q ⪰Γ Q

′ is that, to obtain Q ′, one has to subtract
a non-negative quantity from Q .
The rule Q:Call handles procedure calls. The pre- and

postcondition for the procedure P are fetched from the spec-
ification context ∆. Then, a non-negative frame x ∈ Q≥0

is added to the procedure specification. This frame allows
to pass some constant potential through the procedure call
and is required for the analysis of most non-tail-recursive
functions. In the soundness proof, this framing boils down to
the łpropagation of constantsž property of the calculus [83]
used in our formal soundness proof.

5 Constraint Generation and Solving
Using LP Solvers

The automatic bound derivation is split in two phases. First,
derivation templates and constraints are generated by in-
ductively applying the inference rules to the input program.
During this first phase, the coefficients of the potential an-
notations are left as symbolic names and the inequalities are

collected as constraints. Each symbolic name corresponds
to a variable in a linear program. Second, we feed the linear
program to an off-the-shelf LP solver1. If the LP solver re-
turns a solution, we obtain a valid derivation and extract the
expected resource bound. Otherwise, an error is reported.

Generating LinearConstraints. Adetailed example of this
process is shown in Figure 6. Note that Q:Weaken is applied
twice. Since this rule is not syntax-directed, it can be applied
at any point during the derivation. In our implementation,
we apply it around all assignments. This proved sufficient
in practice and limits the number of constraints generated.
In the figure, the potential annotations are represented by
an upper-case letter P orQ with an optional superscript. For
example, Q represents the potential function

q1 · 1 + qx0 · |[0,x]| + qx1 · |[1,x]| + qx2 · |[2,x]|

The set of base functions is 1 and |[i,x]| for i ∈ {0, 1, 2}. We
will see that they are sufficient to infer a bound. Details of
how to select base functions are given in Section 8. To apply
weakening, we need rewrite functions, we pick

F0 = 1; F1 = −1 + |[0,x]| − |[1,x]|; F2 = −2 + |[0,x]| − |[2,x]|

F1 is applicable (i.e., non-negative) iff x ≥ 1. Similarly, F2 is
applicable iff x ≥ 2. This means that both rewrite functions
can be used at the beginning of the loop body, when x ≥ 2

can be proved because of the loop condition.
The constraints given in the table in Figure 6 use shorthand

notations to constrain all the coefficients of two annotations.
For instance Q = Qsq should be expanded into q1 = q

sq
1 ∧

qx0 = q
sq
x0 ∧ qx1 = q

sq
x1 ∧ qx2 = q

sq
x2. The most interesting

rules are the probabilistic branching, the two weakenings,
and the two assignments. For the probabilistic branching,
following Q:PIf, the preconditions of the two branches are
linearly combined using the weights 1

3 and 1 − 1
3 =

2
3 .

We now discuss the first weakening. The second one gen-
erates an identical set of constraintsÐbut the LP solver will
give it a different solution. The most interesting constraints
are the ones for Qw1 ⪰(x ≥2) Q

d1. This relation is defined
by the rule Relax in Figure 5 and involves finding all the
applicable rewrite functions in the logical state x ≥ 2. As
discussed above, F0, F1, and F2 are all applicable, thus the
following system of constraints is generated.

©«
qd11

qd1x0
qd1x1
qd1x2

ª®®¬
=

©«
qw1
1

qw1
x0

qw1
x1

qw1
x2

ª®®¬
−

©«
1 −1 −2

0 1 1

0 −1 0

0 0 −1

ª®®¬
(

u0
u1
u2

)
∧

(
u0
u1
u2

)
≥

(
0

0

0

)

The columns of the (4×3) matrix correspond, in order, to F0,
F1, and F2. The coefficients (ui ) are fresh names that are local
to this weakening.
For the first assignment Q:Assign1, the stable set dis-

cussed in Section 4.3 isSx=x−1 = {1, |[0,x]|, |[1,x]|}. Indeed,

1We use Coin-Or’s CLP.
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⊢ {x ≥ 2;Qd1 }x = x − 1{.; Pd1 }
Q:Assign1

⊢ {x ≥ 2;Qw1 }x = x − 1{.; Pw1 }
Q:Weaken1

⊢ {x ≥ 2;Qd2 }x = x − 2{.; Pd2 }
Q:Assign2

⊢ {x ≥ 2;Qw2 }x = x − 2{.; Pw2 }
Q:Weaken2

⊢ {x ≥ 2;Qpi }x = x − 1 ⊕ 1
3
x = x − 2{.; Ppi }

Q:PIf

······· ⊢ {.;Q t i } tick (1){.; P t i }
Q:Tick

⊢ {x ≥ 2;Qsq } x = x − 1 ⊕ 1
3
x = x − 2; tick (1){.; P sq }

Q:Seq

⊢ {.;Q } while (x >= 2){x = x − 1 ⊕ 1
3
x = x − 2; tick (1)} {x < 2; P }

Q:Loop

Constraints

Q = Qsq
= P sq = P

Qsq
= Qpi ∧ Ppi = Q t i ∧ P t i = P sq

Qpi
=

1
3 ·Q

w1
+

2
3 ·Q

w2 ∧ Ppi = Pw1
= Pw2

Qw1 ⪰(x≥2) Q
d1 ∧ Pd1 ⪰(x≥2) P

w1

qd11 = p
d1
1 ∧ qd1x0 = 0 ∧ qd1x1 = p

d1
x0∧

qd1x2 = p
d1
x1 ∧ pd1x2 = 0

Qw2 ⪰(x≥2) Q
d2; Pd2 ⪰(x≥2) P

w2

qd21 = p
d2
1 ∧ qd2x0 = 0 ∧ qd2x1 = 0∧

qd2x2 = p
d2
x0 ∧ pd2x1 = 0 ∧ pd1x2 = 0

Q t i
= P t i + 1

Figure 6. Inference of a derivation using linear constraint solving.

only |[2,x]| is unstable since it becomes |[3,x]| after the as-
signment x = x−1. Since the assignment leaves 1 unchanged
and changes |[0,x]| into |[1,x]| and |[1,x]| into |[2,x]|, the
system of constraints generated is

©«
qd11

qd1x0
qd1x1
qd1x2

ª®®¬
=

©«
1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

ª®®¬
©«

pd11

pd1x0
pd1x1
pd1x2

ª®®¬
∧ pd1x2 = 0

or qd11 = p
d1
1 ∧ qd1x0 = 0 ∧ qd1x1 = p

d1
x0 ∧ qd1x2 = p

d1
x1 ∧ pd1x2 = 0.

Solving the Constraints. The LP solver does not only find
a solution that satisfies the constraints, it also optimizes
a linear objective function. In our case, we would like to
find the tightestÐi.e, smallestÐupper bound on the expected
resource consumption. In the implementation, we use an
iterative scheme that takes advantage of the incremental
solving capabilities of modern LP solvers. Starting at the
maximum degree d , we ask the LP solver to minimize the
coefficients (qdi )i of all the base functions of degree d . If a

solution (kdi )i is returned, we add the constraints
∧

i q
d
i = k

d
i

to the linear program. Then, the same scheme is iterated for
base functions of degree d − 1,d − 2, . . . , 1. For our running
example, the first objective function for the linear coefficients
is 20 ·qx0+10 ·qx1+1 ·qx2. The weight of the coefficients are
set to signify facts about the base functions to the LP solver.
For instance, qx0 gets a smaller weight than qx1 because
|[0,x]| ≥ |[1,x]| for all x . The final solution returned by the
LP solver is qx0 =

3
5
and q⋆ = 0 otherwise. Thus the derived

bound is 3
5
|[0,x]|.

6 Soundness of the Analysis

The soundness of the analysis is proved with respect to an op-
erational semantics based on Markov decision processes [75].
It leverages previous work on probabilistic programs by re-
lying on the soundness of a weakest pre-expectation (WP)
calculus [63, 83].

6.1 Weakest Pre-expectation Transformer

We can use a WP calculus [44, 72] to express the resource
usage of a program (c,D), using an expected runtime trans-

former given in continuation-passing style. Following pre-
vious work [63, 83], such a transformer for our language

Table 1. Expected resource usage transformer.

c ert [c, D](f )

abort 0

skip f

tick (q) q + f

assert e Je : true K·f

id = e f [e/ id ]

id = e bop R λσ .EµR (λv .f (σ [e bop v/ id ]))

if e c1 else c2 Je : true K· ert [c1, D](f ) + Je : false K· ert [c2, D](f )

if ⋆ c1 else c2 max { ert [c1, D](f ), ert [c2, D](f )}

c1 ⊕p c2 p · ert [c1, D](f ) + (1 − p)· ert [c2, D](f )

c1; c2 ert [c1, D]( ert [c2, D](f ))

while e c lfpX .(Je : true K· ert [c, D](X ) + Je : false K·f )

call P lfpX .( ert [D(P )]
♯
X
)(f )

is defined in Table 1. It operates on the set of expectations
T := { f | f : Σ → R≥0 ∪ {∞}}. In the table, EµR [h] :=∑
v P(R = v)·h(v) represents the expected value of the ran-

dom variable h w.r.t the distribution µR . max { f1, f2} :=

λσ . max { f1(σ ), f2(σ )}. lfpX .F (X ) is the least fixed point

of the function F . And auxiliary cost transformer ert [·]
♯
X
(f )

is parameterized over another expected cost transformer
X : T→ T. See the TR [75] for details.

More precisely, the transformer ert [c,D](f )(σ ) computes
the expected number of ticks consumed by the program
(c,D) from the input state σ and followed by a computation
that has an expected tick consumption given by f . In our
case, it is a good intuition to think of expectations as mere
potential functions. Olmedo et al. [83] proved the soundness
of the ert (f ) with respect to an operational model based on
Markov decision processes.

6.2 Soundness

We first interpret the pre- and postconditions of the triples as
expectations. This interpretation is a function T that maps
{Γ;Q} to the assertion T (Γ;Q) defined as T (Γ;Q)(σ ) :=

max(Γ(σ ),ΦQ (σ )), where ΦQ is the potential function asso-
ciated with the quantitative annotation Q and Γ is lifted as a
function on states such that Γ(σ ) is 0 if σ |= Γ and∞ other-
wise. The soundness of the automatic analysis can now be
stated formally w.r.t the WP calculus.

Theorem 6.1 (Soundness of the automatic analysis). Let c
be a command in a larger program (_,D). If ⊢ {Γ;Q}c{Γ′;Q ′}
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is derivable, then ∀σ ∈ Σ, the following holds

T (Γ;Q)(σ ) ≥ ert [c,D](T (Γ′;Q ′))(σ )

Proof. The proof is done by induction on the program struc-
ture and the derivation. See the TR [75] for details. □

7 Tail-bound Analysis

One application of our expected resource usage analysis
is to combine it with concentration inequalities to bound
the probability that the resource usage deviates from some
given value. There are many forms of concentration inequal-
ities [34] under various assumptions in probability theory.
We focus on two important inequalitiesÐMarkov and Cheby-
shevÐthat work well with expected bound analysis.

Markov’s Inequality. Let t be the resource usage of a prob-
abilistic program, which is a non-negative random variable.
Then Markov’s inequality states that for all a > 0 the proba-
bility of |t | ≥ a is bounded by the expectation of |t | divided
by a. Since t is non-negative we have

P(t ≥ a) ≤
E(t)

a

Therefore, by automatically deriving bounds on the expected
resource usage, we can bound the probability of a large devi-
ation from the expected resource consumption.
For example, consider the simple random walk from Sec-

tion 3.1 again with the initial value of x = n > 0. Then the
expected resource usage is bounded by 2|[0,n]|. Assume that
we want to bound the probability that the resource usage is
greater than 10|[0,n]|. Following the Markov inequality and
the derived bound, we have

P(t ≥ 10|[0,n]|) ≤
E(t)

10|[0,n]|
≤

2|[0,n]|

10|[0,n]|
= 0.2

Chebyshev’s Inequality. If the resource usage t has finite
expected value and finite non-zero variance Var(t). Then for
all a ∈ R such that a > 0, Chebyshev’s inequality implies

P(|t − E(t)| ≥ a) ≤
Var(t)

a2
=

E((t−E(t))2)

a2
=

E(t2) − E(t)2

a2

Hence, by deriving a lower bound ℓ on the resource usage t
and an upper bound u the squared expected resource usage
t2, we get

P(|t − E(t)| ≥ a) ≤
u − ℓ2

a2

It is in general possible to derive such tail bounds with the
expected potential method. We can use an auxiliary variable
sqt to encode the square of resource usage, for example by
squaring the resource usage t at the exit point of the program.
While the potential method generally supports non-linear
arithmetic [54], this would have to be implemented with a
while loop in the current version of Absynth. Similarly, the
potential method can be used to derive lower bounds [76]
but this is not yet implemented in Absynth.

We leave a systematic study of deriving tail bounds with
the expected potential method for future work.

8 Implementation and Experiments

In this section, we first describe the implementation of the
automatic analysis in the tool Absynth. Then we evaluate
the performance of our tool on a set of challenging examples.

8.1 Implementation

Absynth is implemented in OCaml and consists of about
5000 LOC. The tool currently works on imperative integer
programs written in a Python-like syntax that supports re-
cursive procedures. It also has a C interface based on LLVM.
Currently, Absynth supports four common distributions:
Bernoulli, binomial, hyper-geometric, and uniform. How-
ever, there are no limitations to the distributions that can be
supported as long as they have a finite domain.

Potential Functions. To discovery the bounds on expected
resource usage automatically, we focus on inferring polyno-
mial potential functions that are linear combinations of base
functions picked among monomials in Absynth. Formally,
they are defined by the following syntax.

M := 1 | x | M1·M2 | |[0, P]| x ∈ VID

P := k ·M | P1+P2 k ∈ Q

GeneratingBase andRewrite Functions. Our analysis can
work with every set of base functions. While it would be
possible to to fix a set of functions once and for all as in pre-
vious work on resource analysis [20, 49], we found that it is
more effective to select the base functions for each program
using a heuristic [19].
At each program point, Absynth uses abstract interpre-

tation (AI) to infer logical contexts with linear inequalities
between program variables. The linear inequalities of the
form

∑
i ai · xi +b ≥ 0, where ai ,b ∈ Q, are used to generate

a set of base functions. One can use a more complex and
powerful AI such as the Apron library [60]. In practice, we
found that our simple AI is sufficient to infer many bounds
and provides good performance. For example, if the AI de-
rives n − x − 1 ≥ 0 at a program point then the heuristic will
add the monomials |[0,n − x]| and |[0,n − x − 1]| as base
functions. Higher-degree base functions can be constructed
by considering powers and products of simpler base func-
tions, e.g., degree 2 base functions such as |[0,n − x]|2 and
|[0,n − x − 1]| · |[0,n − x]|.
The base functions at a program point are used to gener-

ate a set of rewrite functions, for which a Presburger deci-
sion procedure is used to reason about the non-negativity
of rewrite functions. Recall that a rewrite function is a lin-
ear combination of base functions of the form

∑
i ki · bi ,

where ki ∈ Q. The set of rewrite functions allows to trans-
fer potential to and from the base functions following the
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inference rule Q:Weaken. For instance, for the base func-
tions |[0,n − x]| and |[0,n − x − 1]|, the heuristic adds the
linear combination F = |[0,n − x]| − |[0,n − x − 1]| − 1 as a
rewrite function. As shown in Figure 7, F can be used for an
assignment x = x + 1 when n − x > 0 to turn the potential
|[0,n − x]| into |[0,n − x]|+1, effectively extracting one unit
of constant potential.

whi l e ( x<n ) {

{ |[0, n − x ] | } ≥

{ |[0, n − x − 1] |+1}

x = x + 1 ;

{ |[0, n − x ] |+1}

}

Figure 7. Rewriting func-
tion example.

User Interaction. Occasion-
ally, when a program re-
quires a complex potential
transformation, our heuristic
might not be sophisticated
enough to identify an appro-
priate set of rewrite func-
tions. In this case, the user
can manually specify a set
of rewrite functions as hints
to be used by the analysis.
These hints, in contrast with typical assertions, have no
runtime effect and do not compromise soundness. In particu-
lar, before using a rewrite function, the analyzer checks that
its non-negativity condition is satisfied.

8.2 Experimental Evaluation

Evaluation Setup. To evaluate the practicality of our frame-
work, we have designed and collected 39 challenging exam-
ples with different loop and recursion patterns that depend
on probabilistic branching and sampling assignments. In
total, the benchmark consists of more than 1000 LOC.
The programs bayesian [43], filling [85], race, 2drwalk,

robot, roulette [23], and sampling [63] have been described
in the literature on probabilistic programs, where their ex-
pected resource consumption has been analyzed manually.
The programsC4B_∗, prseq, prseq, preseq_bin, prspeed, rdseql,
rdspeed, and recursive are probabilistic versions of determin-
istic examples from previous work [19, 20, 47]. The other
examples are either adaptations of classic randomized al-
gorithms or handcrafted new programs that demonstrate
particular capabilities of our analysis. Section 3 contains
some representative listings.
To measure the expected resource usage of all examples

by simulation, we uniformly chose the range of inputs to
be 1000 to 5000 and allowed only 1 input variable to vary
while choosing fixed random values for other inputs.2 We
sampled the resource usage 10000 times for each input using
the GSL-GNU scientific library [1]. We then compared the
results to our statically computed bounds. The simulation is
implemented in C++ and consists of more than 5000 LOC.
The experiments were run on a machine with an Intel

Core i5 2.4 GHz processor and 8GB of RAM under macOS
10.13.1. The LP solver we use is CoinOr CLP [88].

2We reduced the input ranges of polynomial programs by an order of

magnitude because their simulation runtime is very long.

Table 2.Automatically-derived bounds on the expected num-
ber of ticks with Absynth.

Linear programs

Program Expected bound Error(%) T(s)

2drwalk 2· |[d, n + 1] | 0.170 2.278

bayesian 5· |[0, n] | 0 0.272

ber 2· |[x, n] | 0.026 0.008

bin 0.2· |[0, n + 9] | 0.290 0.281

C4B_t09 8.27273· |[0, x ] | 5.362 0.061

C4B_t13 1.25· |[0, x ] | + |[0, y] | 0.009 0.045

C4B_t15 2· |[0, x ] | A.S 0.044

C4B_t19 |[0, k + i + 51] | + 2· |[100, i] | 2.711 0.058

C4B_t30 0.5· |[0, x + 2] | + 0.5· |[0, y + 2] | W.C 0.032

C4B_t61 0.060606· |[0, l − 1] | + |[0, l ] | 0.754 0.028

condand |[0,m] | + |[0, n] | A.S 0.010

cooling 0.42· |[0, t + 5] | + |[st, mt] | 0.192 0.079

fcall 2· |[x, n] | 0.025 0.008

filling 0.037037· |[0, vol + 2] |+ 0.713 0.615

0.333333· |[0, vol + 10] |+

0.296296· |[0, vol + 11] |

hyper 5· |[x, n] | 0.061 0.013

linear01 0.6· |[0, x ] | 0.036 0.016

miner 7.5· |[0, n] | 0.071 0.077

prdwalk 1.14286· |[x, n + 4] | 0.128 0.052

prnes 68.4795· |[0, −n] | + 0.052631· |[0, y] | 0.122 0.057

prseq 1.65· |[y, x ] | + 0.15· |[0, y] | 0.144 0.057

prseq_bin 1.65· |[y, x ] | + 0.15· |[0, y] | 0.150 0.082

prspeed 2· |[y,m] | + 0.666667· |[x, n] | 0.039 0.057

race 0.666667· |[h, t + 9] | 0.294 0.245

rdseql 2.25· |[0, x ] | + |[0, y] | 0.007 0.025

rdspeed 2· |[y,m] | + 0.666667· |[x, n] | 0.039 0.040

rdwalk 2· |[x, n + 1] | 0.075 0.012

robot 0.384615· |[0, n + 6] | R.D 2.658

roulette 4.93333· |[n, 10010] | 0.282 1.216

sampling 2· |[0, n] | 0.026 3.347

sprdwalk 2· |[x, n] | 0.032 0.017

Polynomial programs

complex 6· |[0,m] | · |[0, n] | + 3· |[0, n] |+ |[0, y] | 0.118 3.415

multirace 2· |[0,m] | · |[0, n] | + 4· |[0, n] | 0.703 9.034

pol04 4.5· |[0, x ] |2 + 7.5· |[0, x ] | 0.779 0.585

pol05 |[0, x ] |2 + |[0, x ] | 0.431 0.353

pol06 0.625· |[min, s] |+ A.S 7.066

2· |[min, s] | · |[0, min] | + 0.625· |[min, s] |2

pol07 1.5· |[0, n − 2] | · |[0, n − 1] | 0.008 4.534

rdbub 3· |[0, n] |2 0.106 0.190

recursive 0.25· |[l, h] |2+1.75· |[l, h] | 0.281 3.791

trader 5· |[smin, s] |
2
+ 5· |[smin, s] |+ 0.251 4.625

10· |[smin, s] | · |[0, smin] |

Results. The results of the evaluation are compiled in Ta-
ble 2. The table is split into linear and non-linear bounds. It
contains the inferred bounds, the total time taken byAbsynth,
and the means (in percentage) of the absolute errors between
the measured expected values and the inferred bounds. In
general, the analysis finds bounds quickly: Each example is
processed in less than 10 seconds. The analysis time mainly
depends on three factors: the number of variables in the
program, the number of base functions, and the size of the
distribution’s domain in the sampling commands. The user
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Figure 8. Comparison of automatically derived bounds with measured cost samples. On the left: histogram of the distribution
of #ticks for rdwalk with p = 1

2 ,K1 = 2,K2 = 1,x = 0, and n = 100. On the right: the inferred bound on the expected #ticks
(blue lines) compared to the measured expected values for various input sizes (red crosses) for trader (at the center) and pol04

(on the right). In the latter, the candlesticks represent the highest and lowest sampled values and the second and third quartiles.

can specify a maximal degree of the bounds to control the
number of base functions under consideration. Our inference
rule for the sampling commands is very precise but the price
we pay for the precision is a linear constraint set whose size
is proportional to the range of the sampling distribution.
As shown in the Error column, the derived bounds are

often not only asymptotically tight but also contain very
precise constant factors. Figure 8 shows representative plots
of comparisons of the inferred bounds and measured cost
samples. Our experiments indicate that the computed bounds
are close to the measured expected numbers of ticks. See the
TR [75] for plots of the other examples.

However, there is no guarantee that Absynth infers asymp-
totically tight bounds and there are many classes of bounds
that Absynth cannot derive. For example, for the programs
whose errors are denoted by A.S in Table 2, we did not com-
pute asymptotically tight bounds. C4B_t15 has logarithmic
expected cost, thus the best bound that Absynth can de-
rive is a linear bound. Similarly, |[0,n]|+|[0,m]| is the best
bound that can be inferred for condand whose expected cost
is 2·min{|[0,n]|, |[0,m]|}. Another source of imprecise con-
stant factors in the bounds is rounding. The program robot

has an imprecise constant factor, denoted R.D in the table,
because it contains a deep nesting of probabilistic choices.
Since we do not assume a particular distribution of the

inputs, the bounds on the expected cost have to consider
the worst case inputs. If a program does not contain prob-
abilistic constructs then we preform in fact a worst-case
analysis. Thus, comparing with the sampled expected cost
on the worst-case inputs gives us a very small error even the
derived bound is not asymptotically tight. For instance, Ab-
synth derives the loose bound 0.5·|[0,x + 2]|+0.5·|[0,y + 2]|
for C4B_t30 whose expected cost is 0.5·|[0,2·(min{x ,y}+2)]|.
If we compare the derived bound with the sampled expected
cost on the worst-case inputs (e.g., values of x and y such
that x = y), then we obtain a very small error. We mark the
error with W.C in this case.

9 Related Work

Our work is a confluence of ideas from automatic resource
bound analysis and analysis of probabilistic programs. They
have been extensively studied but developed independently.
In spite of abundant related research, we are not aware of
existing techniques that can automatically derive symbolic
bounds on the expected runtime of probabilistic programs.

Resource BoundAnalysis. Most closely related to ourwork
is prior work on AARA for deterministic programs. AARA
has been introduced in [55] for automatically deriving lin-
ear worst-case bounds for first-order functional programs.
The technique has been generalized to derive polynomial
bounds [50, 52, 53, 57, 58], lower bounds [76], and to handle
(strictly evaluated) programs with arrays and references [70],
higher-order functions [51, 61], lazy functional programs [86,
90], object-oriented programs [56, 59], and user defined data
types [51, 62]. It also has been integrated into separation
logic [6] and proof assistants [25, 81]. A distinctive common
theme of sharing is compositionality and automatic bound
inference via LP solving.
In contrast to our work, all prior research on AARA tar-

gets deterministic programs and derives worst-case bounds
rather than bounds on the expected resource usage. In our
formulation of AARA for probabilistic programs, we build on
prior work that integrated AARA into Hoare logic to derive
bounds for imperative code [18ś20, 80], a new technique for
deriving polynomial bounds on the expected resource usage
of programs with probabilistic sampling and branching.
Beyond AARA there exists many other approaches to

automatic worst-case resource bound analysis for determin-
istic programs. They are based on sized types [89], linear
dependent types [68, 69], refinement types [29, 92], anno-
tated type systems [31, 32], defunctionalization [7], recur-
rence relations [3, 4, 13, 33, 38, 46, 66], abstract interpreta-
tion [14, 22, 47, 87, 91], template based assume-guarantee
reasoning [71], measure functions [27], and techniques from
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term rewriting [8, 17, 39, 82]. These techniques do not ap-
ply to probabilistic programs and do not derive bounds on
expected resource usage.

The decision to base our analysis on AARA is mainly mo-
tivated by the strong connection to existing techniques for
(manually) analyzing expected runtime (see next paragraph)
and the general advantages of AARA, including composition-
ality, tracking of amortization effects, flexible cost models,
and efficient bound inference using LP solving.
We are only aware of few works that study the analysis

of expected resource usage of probabilistic programs. Chat-
terjee et al. [28] propose a technique for solving recurrence
relations that arise in the analysis of expected runtime cost.
Their technique can derive bounds of the formO(logn),O(n),
andO(n logn). Similarly, Flajolet et al. [37] describe an auto-
matic for average-case analysis that is based on generating
functions and that can be seen as a method for solving re-
currences. While these techniques apply to recurrences that
describe the resource usage of randomized algorithms, the
works do not propose a technique for deriving recurrences
from a program. It is therefore not a push-button analysis
for probabilistic programs but complementary to our work
since they can derive logarithmic bounds.

Analysis of Probabilistic Programs. Consideringwork on
analyzing probabilistic programs, most closely related is a
recent line of work by Kaminski et al. [63, 83]. The goal of
this work is to characterize the expected runtime of proba-
bilistic programs. However, they use a WP calculus to derive
pre-expectations and do not consider any automation. The
technique can be seen as a generalization of quantitative
Hoare logic [18, 20] for AARA to the probabilistic setting
but does not provide support for automatic reasoning. In
fact, when attempting to generalize AARA to probabilistic
programs we were first unaware of the existing work and
rediscovered some of the proof rules. Our contributions are
new specialized proof rules that allow for automation using
LP solving and a prototype implementation of the new tech-
nique. While our soundness proof is original, it leverages the
proof by Kaminski et al. by relying on the soundness of the
rules for weakest preconditions.
The use of pre-expectations for reasoning about proba-

bilistic programs dates back to the pioneering work of Kozen
and others [21, 67, 72]. It has been automated using con-
straint generation [65] and abstract interpretation [24] to
derive quantitative invariants. However, it is unclear how
to use them to automatically derive symbolic (polynomial)
bounds like in our work.

The recent work of Batz et al. [12] also has the goal of au-
tomatically deriving expected runtime bounds using the WP
calculus. However, the scope of the work and the techniques
used are quite different: Batz et al. derive constant bounds for
Bayesian networks that correspond to loop-free programs

with finite states; a computationally hard yet decidable prob-
lem. In contrast, this works uses constraint solving to derive
symbolic bounds for programs with loops and recursion,
which is in general undecidable.

Another body of research relies on probabilistic pushdown
automata and martingale theory to analyze the termination
time [16] and the expected number of steps [35]. The use of
martingale theory to automatically analyze probabilistic pro-
grams has been pioneered in [23]. While their technique also
relies on linear constraints, it is proving almost-sure termina-
tion instead of resource bounds and relies on Farka’s lemma.
More general methods [26] are able to synthesize polynomial
ranking-supermartingales for proving termination.
Abstract interpretation has also been applied to proba-

bilistic programs [30, 73, 74] but we are not aware of its
application to derive bounds on the expected resource usage.
Another approach to automatically analyze probabilistic pro-
grams is based on symbolic inference [40] and analyzing exe-
cution paths with statistical techniques [15, 41, 77ś79, 85]. In
the context of analyzing differential privacy, there are works
with limited automation that focus on deriving bounds on
the privacy budget for probabilistic programs [10, 48].

10 Conclusion

We have introduced a new technique for automatically infer-
ring polynomial bounds on the expected resource consump-
tion of probabilistic programs. The technique is a combina-
tion of existing manual quantitative reasoning for probabilis-
tic programs and an automatic worst-case bound analysis for
deterministic programs. The effectiveness of the technique
is demonstrated with an implementation and the automatic
analysis of challenging examples from previous work.
In the future, we plan to study how to build on the intro-

duced technique to automatically derive tail bounds, that is,
worst-case bounds that hold with high probability. We are
also working on a more direct soundness argument that also
works for non-monotone resources. Finally, we plan to build
on Resource Aware ML [51] to apply the expected potential
method to (higher-order) functional programs.
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