
Formal Verification of a
Synchronous Data-flow
Compiler: from Signal to C

Van-Chan Ngo

Jean-Pierre Talpin

PhD Defense

INRIA Rennes, France

Advisor
INRIA Rennes, France

Construct a translation
validation-based
verification framework to
check the correctness of
the synchronous data-
flow compiler, Signal.

Agenda

 Detected Bugs
 Conclusion

 Motivation
 Related Work
 Approach

 Cock Semantics Preservation
 Data Dependency Preservation
 Value-Equivalence Preservation

Motivation
Compiles into (b ==0) & (c != 0)

Program always aborts

Compilers always might have bugs!

Development of critical software

• Safety requirements have to be implemented correctly

• Formal verification is applied at source level (static
analysis, model checking, proof)

• The guarantees are obtained at source program might
be broken due to the compiler bugs

• Raise awareness about the importance of compiler
verification in critical software development

Related work on compiler verification

• SuperTest: test and validation suite

• DO-178: certification standards

• Astrée: a static analyzer

• Static analysis of Signal programs for efficient code
generation (Gamatié et al.)

• Translation validation for optimizing compiler (Berkeley, US)

• CompCert: a certified C compiler (Inria, France)

• Verified LLVM compiler (Harvard, US)

Compiler verification
Testing-based approach

• Test and validation suite to verify compilers

• Test suite to qualify the compiler’s output

Formal method-based approach

• Formal verification of compilers

• Formal verification of compiler’s output

• Translation validation to check the correctness of the
compilation

Translation validation

• Takes the source and compiled programs as input

• Checks that the source program semantics is
preserved in the compiled program

Translation validation: Main components
Model builder

• Defines common semantics

• Captures the semantics of the source and compiled
programs

Analyzer

• Formalizes the notion of “correct implementation”

• Provides an automated proof method

• Generates a proof scripts or a counter-example

Translation validation: Features

• Avoiding redoing the proof with changes of compiler

• Independence of how the compiler works

• Less to prove (in general, the validator is much more
simple than the compiler)

• Verification process is fully automated

Signal compiler

• Syntax and type checking

• Clock analysis

• Data dependency analysis

• Executable code generation

Objective

A method to formally verify the Signal compiler such that

• light weight

• scalable: deals with 500K lines of code of the
implementation

• modularity

• accuracy: the proof is separated w.r.t the data
structure (clock, data dependency, value-equivalence)

Approach

• Adopt translation validation approach

• Prove the correctness of each phase w.r.t the data
structure carrying the semantics relevant to that phase

• Decompose the preservation of the semantics into the
preservation of clock semantics, data dependency,
and value-equivalence

Formally verified Signal compiler

Formally verified Signal compiler

Formally verified Signal compiler

Formally verified Signal compiler

Signal language

• Signal x: sequences of typed values (is
absence)

• Clock of x: instants at which

• Process: set of equations representing relations
between signals

• Parallelism: processes run concurrently

• Example:

• Other languages: Esterel, Lustre, Scade, …

x(t), t 2 N ?

C
x

x(t) 6= ?

y := x+ 1, 8t 2 Cy, y(t) = x(t) + 1

Primitive operators

• Stepwise functions:

• Delay:

• Merge:

y := f(x1, ..., xn)

8t 2 C

y

, y(t) = f(x1(t), ..., xn

(t)), C
y

= C

x1 = ... = C

xn

y := x$1 init a

y(t0) = a, 8t 2 C

x

^ t > t0, y(t) = x(t�), Cy

= C

x

y := x default z

y(t) = x(t) if t 2 C

x

, y(t) = z(t) if t 2 C

z

\ C
x

,

C
y

= C
x

[C
z

Primitive operators

• Sampling:

• Composition:

 Denotes the parallel composition of two processes

• Restriction:

 Specifies that x as a local signal to P

y := x when b

8t 2 C

x

\ C

b

^ b(t) = true, y(t) = x(t), C
y

= C

x

\ [b]

P1|P2

P where x

Example

• Emits a sequence of values

• Execution traces

FB, FB� 1, ..., 1

Preservation of clock semantics

Clock model

�(b := b1 and b2) = (bb , bb1 , bb2) ^ (bb) (eb , eb1 ^ eb2))

Encodes the clock

Encodes the value

�(e := e1 + e2) = (be , cvi+ , be1 , be2) ^ (be) (ee = fvi+))

Uninterpreted functions

�(P) =
n̂

i=1

�(eqi)

Clock model of P

Clock model of DEC
FB ˆ= when (ZN <= 1)

(dFB , [ZN1 ^]ZN1)

^ ([ZN1 , dv1<= , dZN) ^ ([ZN1) (]ZN1 = gv1<=))

^ (dZN , bN) ^ (dZN) (gZN = m.N ^m.N 0 = eN))

^ (m.N0 = 1)

N := FB default (ZN � 1)
ZN := N$1 init 1

^ (bN , dFB _ [ZN2) ^ (bN) ((dFB ^ eN = gFB)

_(¬dFB ^ eN =]ZN2)))

^ ([ZN2 , cv1� , dZN) ^ ([ZN2) (]ZN2 = fv1�))

Clock refinement

• Clock event: A clock event is an interpretation over X.
The set of clock events denoted by

• Clock trace: A clock trace is a chain of
clock events. The concrete clock semantic of is
a set of clock trace denoted by

• Clock refinement:

EcX

Tc : N �! EcX

�(C) vclk �(A) on X i↵

�(P)
�(�(P))\X

8X.Tc.(X.Tc 2 �(�(C))\X) X.Tc 2 �(�(A))\X)

Proof method

• Define a variable mapping

• Given , prove ↵
�(C) vclk �(A) on XIO

dXA \ dXIO = ↵(dXC \ dXIO)

dXA \ dXIO = ↵(dXC \ dXIO)

8ˆI over

dXA [dXC .(ˆI |= �(C)) ˆI |= �(A))

�(C) vclk �(A) on XIO

Premise

Conclusion

Implementation with SMT

• Construct and

• Establish

• Check the validity of

�(A) �(C)

(�(C) ^dXA \ dXIO = ↵(dXC \ dXIO)) �(A))

|= (�(C) ^dXA \ dXIO = ↵(dXC \ dXIO)) �(A))

Preservation of data dependency

Synchronous data-flow dependency graph (SDDG)

• Data dependency is represented as a labeled directed
graph

• Nodes are signals or clocks

• Edges express the dependencies among signals and
clocks

• Clock constraints are first-order logic formulas to label
the edges

• A dependency is effective iff its clock constraint has
the value true

SDDG of primitive operators

• y depends on x when

• Clock constraint of a dependency path

 is defined by

• A cyclic path is a deadlock if and only if

y := x default z

x̂ = true

dp = (x0, x1, ..., xn)
n�1̂

i=0

bci

M |=
n�1̂

i=0

bci

SDDG of DEC

Clock relations

FB ˆ= when (ZN <= 1)

ZN := N$1 init 1

N := FB default (ZN � 1)

[ZN1 = [ZN2 = dZN = bN
dFB = [ZN1 ^]ZN1
bN = dFB _ [ZN2

Dependency refinement

SDDG(C) is a dependency refinement of SDDG(A) if:

• For every path dp1 in SDDG(A), there exits a path dp2
in SDDG(C) such that dp2 is a reinforcement of dp1

• For every path in dp1 SDDG(A), for any path dp2 in
SDDG(C), dp2 is deadlock-consistent with dp1

Reinforcement

A path dp2 is a reinforcement of a path dp1 iff the
following formula is valid

|=
n�1̂

i=0

bci)
m�1̂

j=0

bc0j
Clock constraint
of dp1

Clock constraint
of dp2

At any instant, if dp1 is effective, then dp2 is effective too

Deadlock-consistency
A path dp2 is a deadlock-consistent with a path dp1 if for any
path dp’1 such that

• dp1 and dp’1 form a cycle path,

• then for every path dp’2 that forms a cycle path the following
formula is valid

Clock constraint of (dp1,dp’1) Clock constraint of (dp2,dp’2)

It indicates that if (dp1, dp’1) doesn’t stand for a deadlock,
then (dp2, dp’2) doesn’t either

|= (
n�1̂

i=0

bci ^
p�1̂

j=0

dcinvj) , false) (
m�1̂

k=0

bc0k ^
q�1̂

l=0

dcinv0
l) , false

Implementation with SMT

• Construct SDDG(A) and SDDG(C)

• Establish the formulas for checking the reinforcement
and deadlock-consistency

• Check the validity of the checking formulas

Preservation of value-equivalence

Synchronous data-flow value-graph (SDVG)

• Signal and clock computation is represented as a
labeled directed graph

• Nodes are clocks, signals, variables, operators, or
gated -node function

• Edges describe the computation relation between the
nodes

• The computation of both Signal program and
generated C code is represented by a shared graph

SDVG of Signal
• For each signal x, its computation is represented as

• The computation of y in is graphically
represented by

x = �(x̂, x̃,?)

y = �(ŷ,�(x̂, x̃, z̃),?); ŷ , (x̂ _ ẑ)

y := x default z

Computation
of clock

Computation
of value

SDVG of generated C

• The computation of the corresponding variable,
denoted by xc, is implemented as follows

• This computation can be represented by the graph

x

c = �(C x,

e
x

c
,?)

SDVG translation validation: Normalizing

Objective

• Prove that for every output signal x and its corresponding
variable xc, they have the same value

Principle

• Define a set of rewrite rules

• Apply the rewrite rules to each graph node individually

• When there is no more rules can be applied to resulting graph,
maximized the shared nodes

• Terminate when there exists no more sharing or rewrite rules can
be applied

SDVG of DEC
Computation of N

Computation of
N’s clock

Computation of
N’s value

Computation of
N and its value
in C code

Normalize SDVG of DEC

There might have more than one normalization scenario

The set of applicable rewrite rules

Rule (3)

Rule (1)

Rule (2) Rule (2)

Rule (4)

Rule (5)

A potential scenario

Normalize SDVG of DEC
Rule (3)

Rule (1)

Rule (2)

Rule (4)

Rule (5)

Rule (2) Rule (4)

Rule (5)

Normalize SDVG of DEC: Final graph

Values of N and
Nc represented by

the same
subgraph

Detected bugs: Multiple constraints on a clock

Cause: The synchronization
between CLK and XZX_24

• In P_BASIC_TRA, x might be
absent when XZX_24 is
absent, which is not the case
in P and P_BOOL_TRA

• XZX_24 is introduced without
declaration

Detection:
�(P BOOL TRA) 6vclk �(P BASIC TRA)

Detected bugs: XOR operator

Cause: wrong implementation of
XOR operator

• In P_BASIC_TRA, true xor true
is true

Detection:
�(P BASIC TRA) 6vclk �(P)

Detected bugs: Merge with constant signal

Cause: wrong implementation of
merge operator with constant signal

• In the generated C code, a
syntax error y = 1; else y = x;

Detection: when constructing the
SDVG graph

Conclusion

A method to formally verify the Signal compiler

• Adopts the translation validation

• Is light-weight, scalable, modular

• Separates the proof into three smaller and
independent sub-proofs: clock semantic, data
dependency, and value-equivalence preservations

Future work

• Fully implementation of the validator: benchmarks and
integration into Polychrony toolset

• Extended the proof to use with the other code
generation schemes (e.g., modular and distributed
code generations)

• Use an SMT solver to reason on the rewrite rules in
SDVG transformations

Publication
• Translation validation for clock transformations in a

synchronous compiler - FASE - ETAPS 2015

• Precise deadlock detection for polychronous data-flow
specifications - ESLsyn - DAC 2014

• Formal verification of synchronous data-flow program
transformations towards certified compilers - FCS 2013

• Formal verification of compiler transformations on
polychronous equations - IFM 2012

• Formal verification of automatically generated C-code
from polychronous data-flow equations - HLDVT 2012

Thank you!

