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Construct a translation 
validation-based 
verification framework to 
check the correctness of 
the synchronous data-
flow compiler, Signal.
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Motivation
Compiles into (b ==0) & (c != 0) 

Program always aborts

Compilers always might have bugs!



Development of critical software

• Safety requirements have to be implemented correctly 

• Formal verification is applied at source level (static 
analysis, model checking, proof) 

• The guarantees are obtained at source program might 
be broken due to the compiler bugs 

•  Raise awareness about the importance of compiler 
verification in critical software development



Related work on compiler verification

• SuperTest: test and validation suite 

• DO-178: certification standards 

• Astrée: a static analyzer 

• Static analysis of Signal programs for efficient code 
generation (Gamatié et al.) 

• Translation validation for optimizing compiler (Berkeley, US) 

• CompCert: a certified C compiler (Inria, France) 

• Verified LLVM compiler (Harvard, US)



Compiler verification
Testing-based approach

• Test and validation suite to verify compilers 

• Test suite to qualify the compiler’s output 

Formal method-based approach

• Formal verification of compilers 

• Formal verification of compiler’s output 

• Translation validation to check the correctness of the 
compilation



Translation validation

• Takes the source and compiled programs as input 

• Checks that the source program semantics is 
preserved in the compiled program



Translation validation: Main components
Model builder

• Defines common semantics 

• Captures the semantics of the source and compiled 
programs 

Analyzer

• Formalizes the notion of “correct implementation” 

• Provides an automated proof method 

• Generates a proof scripts or a counter-example



Translation validation: Features

• Avoiding redoing the proof with changes of compiler 

• Independence of how the compiler works 

• Less to prove (in general, the validator is much more 
simple than the compiler) 

• Verification process is fully automated



Signal compiler

• Syntax and type checking 

• Clock analysis 

• Data dependency analysis 

• Executable code generation



Objective

A method to formally verify the Signal compiler such that

• light weight 

• scalable: deals with 500K lines of code of the 
implementation 

• modularity

• accuracy: the proof is separated w.r.t the data 
structure (clock, data dependency, value-equivalence)



Approach

• Adopt translation validation approach 

• Prove the correctness of each phase w.r.t the data 
structure carrying the semantics relevant to that phase 

• Decompose the preservation of the semantics into the 
preservation of clock semantics, data dependency, 
and value-equivalence



Formally verified Signal compiler
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Signal language

• Signal x: sequences                  of typed values (    is 
absence) 

• Clock      of x: instants at which  

• Process: set of equations representing relations 
between signals 

• Parallelism: processes run concurrently 

• Example:  

• Other languages: Esterel, Lustre, Scade, …

x(t), t 2 N ?

C
x

x(t) 6= ?

y := x+ 1, 8t 2 Cy, y(t) = x(t) + 1



Primitive operators

• Stepwise functions: 

• Delay:  

• Merge: 

 

y := f(x1, ..., xn)

8t 2 C

y

, y(t) = f(x1(t), ..., xn

(t)), C
y

= C

x1 = ... = C

xn

y := x$1 init a

y(t0) = a, 8t 2 C

x

^ t > t0, y(t) = x(t�), Cy

= C

x

y := x default z

y(t) = x(t) if t 2 C

x

, y(t) = z(t) if t 2 C

z

\ C
x

,

C
y

= C
x

[ C
z



Primitive operators

• Sampling: 

• Composition: 

    Denotes the parallel composition of two processes 

• Restriction: 

    Specifies that x as a local signal to P 

y := x when b

8t 2 C

x

\ C

b

^ b(t) = true, y(t) = x(t), C
y

= C

x

\ [b]

P1|P2

P where x



Example

• Emits a sequence of values  

• Execution traces

FB, FB� 1, ..., 1



Preservation of clock semantics



Clock model

�(b := b1 and b2) = (bb , bb1 , bb2) ^ (bb ) (eb , eb1 ^ eb2))

Encodes the clock

Encodes the value

�(e := e1 + e2) = (be , cvi+ , be1 , be2) ^ (be ) (ee = fvi+))

Uninterpreted functions

�(P ) =
n̂

i=1

�(eqi)

Clock model of P



Clock model of DEC
FB ˆ= when (ZN <= 1)

(dFB , [ZN1 ^ ]ZN1)

^ ([ZN1 , dv1<= , dZN) ^ ([ZN1 ) (]ZN1 = gv1<=))

^ (dZN , bN) ^ (dZN ) (gZN = m.N ^m.N 0 = eN))

^ (m.N0 = 1)

N := FB default (ZN � 1)
ZN := N$1 init 1

^ ( bN , dFB _ [ZN2) ^ ( bN ) ((dFB ^ eN = gFB)

_(¬dFB ^ eN = ]ZN2)))

^ ([ZN2 , cv1� , dZN) ^ ([ZN2 ) (]ZN2 = fv1�))



Clock refinement

• Clock event: A clock event is an interpretation over X. 
The set of clock events denoted by   

• Clock trace: A clock trace                         is a chain of 
clock events. The concrete clock semantic of          is 
a set of clock trace denoted by  

• Clock refinement:  

EcX

Tc : N �! EcX

�(C) vclk �(A) on X i↵

�(P )
�(�(P ))\X

8X.Tc.(X.Tc 2 �(�(C))\X ) X.Tc 2 �(�(A))\X)



Proof method

• Define a variable mapping   

• Given   , prove  ↵
�(C) vclk �(A) on XIO

dXA \ dXIO = ↵(dXC \ dXIO)

dXA \ dXIO = ↵(dXC \ dXIO)

8ˆI over

dXA [ dXC .(ˆI |= �(C) ) ˆI |= �(A))

�(C) vclk �(A) on XIO

Premise

Conclusion



Implementation with SMT

• Construct          and 

• Establish  

• Check the validity of  

�(A) �(C)

(�(C) ^dXA \ dXIO = ↵(dXC \ dXIO) ) �(A))

|= (�(C) ^dXA \ dXIO = ↵(dXC \ dXIO) ) �(A))



Preservation of data dependency



Synchronous data-flow dependency graph (SDDG)

• Data dependency is represented as a labeled directed 
graph 

• Nodes are signals or clocks 

• Edges express the dependencies among signals and 
clocks 

• Clock constraints are first-order logic formulas to label 
the edges 

• A dependency is effective iff its clock constraint has 
the value true



SDDG of primitive operators

• y depends on x when  

• Clock constraint of a dependency path                                       

                                   is defined by 

• A cyclic path is a deadlock if and only if 

y := x default z

x̂ = true

dp = (x0, x1, ..., xn)
n�1̂

i=0

bci

M |=
n�1̂

i=0

bci



SDDG of DEC

Clock relations

FB ˆ= when (ZN <= 1)

ZN := N$1 init 1

N := FB default (ZN � 1)

[ZN1 = [ZN2 = dZN = bN
dFB = [ZN1 ^ ]ZN1
bN = dFB _ [ZN2



Dependency refinement

SDDG(C) is a dependency refinement of SDDG(A) if: 

• For every path dp1 in SDDG(A), there exits a path dp2 
in SDDG(C) such that dp2 is a reinforcement of dp1 

• For every path in dp1  SDDG(A), for any path dp2  in 
SDDG(C), dp2 is deadlock-consistent with dp1



Reinforcement

A path dp2 is a reinforcement of a path dp1 iff the 
following formula is valid

|=
n�1̂

i=0

bci )
m�1̂

j=0

bc0j
Clock constraint 
of dp1

Clock constraint 
of dp2

At any instant, if dp1 is effective, then dp2 is effective too 



Deadlock-consistency
A path dp2 is a deadlock-consistent with a path dp1 if for any 
path dp’1 such that 

• dp1  and dp’1 form a cycle path, 

• then for every path dp’2 that forms a cycle path the following 
formula is valid

Clock constraint of (dp1,dp’1) Clock constraint of (dp2,dp’2)

It indicates that if (dp1, dp’1) doesn’t stand for a deadlock, 
then (dp2, dp’2) doesn’t either

|= (
n�1̂

i=0

bci ^
p�1̂

j=0

dcinvj ) , false ) (
m�1̂

k=0

bc0k ^
q�1̂

l=0

dcinv0
l ) , false



Implementation with SMT

• Construct SDDG(A) and SDDG(C) 

• Establish the formulas for checking the reinforcement 
and deadlock-consistency 

• Check the validity of the checking formulas



Preservation of value-equivalence



Synchronous data-flow value-graph (SDVG)

• Signal and clock computation is represented as a 
labeled directed graph 

• Nodes are clocks, signals, variables, operators, or 
gated -node function 

• Edges describe the computation relation between the 
nodes 

• The computation of both Signal program and 
generated C code is represented by a shared graph



SDVG of Signal
• For each signal x, its computation is represented as  

• The computation of y in                                   is graphically 
represented by                                                              

x = �(x̂, x̃,?)

y = �(ŷ,�(x̂, x̃, z̃),?); ŷ , (x̂ _ ẑ)

y := x default z

Computation 
of clock

Computation 
of value                                                             



SDVG of generated C

• The computation of the corresponding variable, 
denoted by xc, is implemented as follows   

• This computation can be represented by the graph 

x

c = �(C x,

e
x

c
,?)



SDVG translation validation: Normalizing

Objective

• Prove that for every output signal x and its corresponding 
variable xc, they have the same value 

Principle

• Define a set of rewrite rules 

• Apply the rewrite rules to each graph node individually  

• When there is no more rules can be applied to resulting graph, 
maximized the shared nodes 

• Terminate when there exists no more sharing or rewrite rules can 
be applied



SDVG of DEC
Computation of N

Computation of 
N’s clock

Computation of 
N’s value

Computation of 
N and its value 
in C code



Normalize SDVG of DEC

There might have more than one normalization scenario

The set of applicable rewrite rules

Rule (3)

Rule (1)

Rule (2) Rule (2)

Rule (4)

Rule (5)

A potential scenario



Normalize SDVG of DEC
Rule (3)

Rule (1)

Rule (2)

Rule (4)

Rule (5)

Rule (2) Rule (4)

Rule (5)



Normalize SDVG of DEC: Final graph

Values of N and 
Nc represented by 

the same 
subgraph



Detected bugs: Multiple constraints on a clock

Cause: The synchronization 
between CLK and XZX_24 

• In P_BASIC_TRA, x might be 
absent when XZX_24 is 
absent, which is not the case 
in P and P_BOOL_TRA 

• XZX_24 is introduced without 
declaration 

Detection: 
�(P BOOL TRA) 6vclk �(P BASIC TRA)



Detected bugs: XOR operator

Cause: wrong implementation of 
XOR operator 

• In P_BASIC_TRA, true xor true 
is true 

Detection: 
�(P BASIC TRA) 6vclk �(P)



Detected bugs: Merge with constant signal

Cause: wrong implementation of 
merge operator with constant signal 

• In the generated C code, a 
syntax error y = 1; else y = x; 

Detection: when constructing the 
SDVG graph



Conclusion

A method to formally verify the Signal compiler

• Adopts the translation validation 

• Is light-weight, scalable, modular 

• Separates the proof into three smaller and 
independent sub-proofs: clock semantic, data 
dependency, and value-equivalence preservations



Future work

• Fully implementation of the validator: benchmarks and 
integration into Polychrony toolset 

• Extended the proof to use with the other code 
generation schemes (e.g., modular and distributed 
code generations) 

• Use an SMT solver to reason on the rewrite rules in 
SDVG transformations



Publication
• Translation validation for clock transformations in a 

synchronous compiler - FASE - ETAPS 2015 

• Precise deadlock detection for polychronous data-flow 
specifications - ESLsyn - DAC 2014 

• Formal verification of synchronous data-flow program 
transformations towards certified compilers - FCS 2013 

• Formal verification of compiler transformations on 
polychronous equations - IFM 2012 

• Formal verification of automatically generated C-code 
from polychronous data-flow equations - HLDVT 2012



Thank you!


