
Verifying and Synthesizing
Constant-Resource
Implementations with Types
Van Chan Ngo
Mario Dehesa-Azuara
Matt Fredrikson
Jan Hoffmann

S&P Oakland 2017

Carnegie Mellon University

Classic non-interference
Program

H H

L L

Classic non-interference
Program

H H

L L

• No high security (H) flows to low security (L)

Classic non-interference
Program

H H

L L

• No high security (H) flows to low security (L)

• High security does not affect low security

Flow to resource consumption
Program

H H

L L

RC
|H|
|L| ?Key size in

cryptography

Observable
behavior

Flow to resource consumption

• Sizes of H (|H|) and L (|L|) and resource consumption
(RC) are low securities

Program
H H

L L

RC
|H|
|L| ?Key size in

cryptography

Observable
behavior

Flow to resource consumption

• Sizes of H (|H|) and L (|L|) and resource consumption
(RC) are low securities

• Nothing about the information flow to RC

Program
H H

L L

RC
|H|
|L| ?Key size in

cryptography

Observable
behavior

Flow to resource consumption

• Sizes of H (|H|) and L (|L|) and resource consumption
(RC) are low securities

• Nothing about the information flow to RC

- Can H and |H| flow to RC (affect RC) ?

Program
H H

L L

RC
|H|
|L| ?Key size in

cryptography

Observable
behavior

Example: Sequential search

Program
List

Key

Output

Checks sequentially the list of items until a match for the
key is found

Example: Sequential search

Program
List

Key

Output

RC

|List|

Checks sequentially the list of items until a match for the
key is found

Example: Sequential search

Program
List

Key

Output

RC

|List|

Checks sequentially the list of items until a match for the
key is found

RC depends on the
matching position

Example: Sequential search

• Problem: High security (List) affects low security (RC)

• Side channel attacks: By observing RC, List can be
learned

Program
List

Key

Output

RC

|List|

Checks sequentially the list of items until a match for the
key is found

RC depends on the
matching position

Resource-aware non-interference
Program

List

Key RC

Output

Resource-aware non-interference

• No high security (H) flows to low security (L)

Program
List

Key RC

Output

Resource-aware non-interference

• No high security (H) flows to low security (L)

• All executions where sizes of high securities are fixed
produce (total) constant-resource consumption (Observing
RC tells nothing about Hs)

Program
List

Key RC

Output

Resource-aware non-interference

• No high security (H) flows to low security (L)

• All executions where sizes of high securities are fixed
produce (total) constant-resource consumption (Observing
RC tells nothing about Hs)

• Thus, only sizes of Hs affect RC

Program
List

Key RC

Output

Resource-aware non-interference

• No high security (H) flows to low security (L)

• All executions where sizes of high securities are fixed
produce (total) constant-resource consumption (Observing
RC tells nothing about Hs)

• Thus, only sizes of Hs affect RC

Program
List

Key RC

Output

|List|

Resource-aware sequential search

Resource-aware sequential search

Metric: function call

Resource-aware sequential search

Metric: function call

Sequentially checks all items, total
of functional calls is length(l)

Resource-aware sequential search

Metric: function call

Sequentially checks all items, total
of functional calls is length(l)

Well-typed
program

Solution: Quantitative language-based approach

Solution: Quantitative language-based approach

• Resource type system proves that resource
consumption is constant if input sizes are fixed

Solution: Quantitative language-based approach

• Resource type system proves that resource
consumption is constant if input sizes are fixed

• Security type system co-operating with resource type
system enforces resource-aware non-interference

Solution: Quantitative language-based approach

• Resource type system proves that resource
consumption is constant if input sizes are fixed

• Security type system co-operating with resource type
system enforces resource-aware non-interference

• Quantification of information leakage of non-constant-
resource programs

Solution: Quantitative language-based approach

• Resource type system proves that resource
consumption is constant if input sizes are fixed

• Security type system co-operating with resource type
system enforces resource-aware non-interference

• Quantification of information leakage of non-constant-
resource programs

• Interactive and automatic program repair

Solution: Quantitative language-based approach

• Resource type system proves that resource
consumption is constant if input sizes are fixed

• Security type system co-operating with resource type
system enforces resource-aware non-interference

• Quantification of information leakage of non-constant-
resource programs

• Interactive and automatic program repair

Focus of this talk

Overview

Security type
system

Resource type
system

Cost model Program
source code

YesNo

Security label
mapping

Interactive
repair

Resource-aware
noninterference

Security type system

Judgement: pc,� `const e : S

pc,� ` e : S

• Under security setting and , e has type S and it
has non-interference property

• If judgements have const annotations then e satisfies
resource-aware non-interference

� pc

Security type system

Judgement: pc,� `const e : S

pc,� ` e : S

Program counter

• Under security setting and , e has type S and it
has non-interference property

• If judgements have const annotations then e satisfies
resource-aware non-interference

� pc

Security type system

Judgement: pc,� `const e : S

pc,� ` e : S

Program counter Security context

• Under security setting and , e has type S and it
has non-interference property

• If judgements have const annotations then e satisfies
resource-aware non-interference

� pc

Security type system

Judgement: pc,� `const e : S

pc,� ` e : S

Program counter Security context

Expression security type
(annotated with security

labels)

• Under security setting and , e has type S and it
has non-interference property

• If judgements have const annotations then e satisfies
resource-aware non-interference

� pc

Security type system

Judgement: pc,� `const e : S

pc,� ` e : S

Program counter Security context Indicate resource-aware
noninterference

Expression security type
(annotated with security

labels)

• Under security setting and , e has type S and it
has non-interference property

• If judgements have const annotations then e satisfies
resource-aware non-interference

� pc

Enforcing resource-aware non-interference

Enforcing resource-aware non-interference

• Two extreme ways: globally and locally enforcing

Enforcing resource-aware non-interference

• Two extreme ways: globally and locally enforcing

• Global reasoning: using the resource type system to
check the whole program is constant-resource

Enforcing resource-aware non-interference

• Two extreme ways: globally and locally enforcing

• Global reasoning: using the resource type system to
check the whole program is constant-resource

- Sound but requires to reason about parts not
affected by high securities

Enforcing resource-aware non-interference

• Two extreme ways: globally and locally enforcing

• Global reasoning: using the resource type system to
check the whole program is constant-resource

- Sound but requires to reason about parts not
affected by high securities

• Local reasoning: ensuring every condition branching
on high security is constant-resource

Enforcing resource-aware non-interference

• Two extreme ways: globally and locally enforcing

• Global reasoning: using the resource type system to
check the whole program is constant-resource

- Sound but requires to reason about parts not
affected by high securities

• Local reasoning: ensuring every condition branching
on high security is constant-resource

- Not sufficient and efficient (rejects valid programs)

Global and local reasoning

• Security type system uses a mix of global
and local reasoning

• Ensure that every expression affected by
high security is

- a resource-aware non-interference, or

- a part of a resource-aware non-
interference (Total resource usage is
constant)

E

resource-aware
noninterference

EE

Local reasoning

Local reasoning

E1

 Resource-aware
noninterference

Local reasoning

E1

 Resource-aware
noninterference

E2

Local reasoning

Connection via low
security

E1

 Resource-aware
noninterference

E2

E

Local reasoning

Connection via low
security

E1

 Resource-aware
noninterference

E2

E

Local reasoning

Example: rule for low security condition

Connection via low
security

E1

 Resource-aware
noninterference

E2

Global reasoning

Global reasoning

E1
 Not have resource-aware

noninterference E2

E

Constant resource
Global reasoning

E1
 Not have resource-aware

noninterference E2

E

Constant resource

E

Global reasoning

E1
 Not have resource-aware

noninterference E2

E

Constant resource

E

Global reasoning

E1
 Not have resource-aware

noninterference E2

Example: rule for cooperating with resource type system

Proving constant-resource

Can waste potential Worst-case resource usage

Can create potential Best-case resource usage

Cannot waste or create potential Exact resource usage

• Based on the existing type system using potential method
(potential encoded in program state to ‘pay’ resource
consumption)

• If final potential is zero then initial potential gives the
constant-resource usage

Affine resource
type system

Relevant resource
type system

Linear resource type system

Evaluation

Evaluation

Common primitive
functions

Evaluation

Common primitive
functions

Constant-time block
encryption algorithm

Evaluation

Common primitive
functions

Database query
functions

Constant-time block
encryption algorithm

Evaluation

Common primitive
functions

Database query
functions

Constant-time block
encryption algorithm

Cost models

Summary
• Notion of resource-aware noninterference

• Security type system: combination of classic
information flow and resource type systems

• Interactive repair procedure

• Implementation of both linear and polynomial resource
consumption

Future work
• Reason about effects of compilation tools and

hardware platforms

