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Flow to resource consumption

• Sizes of H (|H|)  and L (|L|) and resource consumption 
(RC) are low securities

• Nothing about the information flow to RC

- Can H and |H| flow to RC (affect RC) ?

Program
H H

L L

RC
|H|
|L| ?Key size in 

cryptography

Observable 
behavior
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Example: Sequential search

• Problem: High security (List) affects low security (RC) 

• Side channel attacks: By observing RC, List can be 
learned
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Checks sequentially the list of items until a match for the 
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RC depends on the 
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Resource-aware non-interference

• No high security (H) flows to low security (L)

• All executions where sizes of high securities are fixed 
produce (total) constant-resource consumption (Observing 
RC tells nothing about Hs)

• Thus, only sizes of Hs affect RC

Program
List

Key RC
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Resource-aware sequential search

Metric: function call

Sequentially checks all items, total 
# of functional calls is length(l)

Well-typed 
program
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Solution: Quantitative language-based approach

• Resource type system proves that resource 
consumption is constant if input sizes are fixed

• Security type system co-operating with resource type 
system enforces resource-aware non-interference

• Quantification of information leakage of non-constant-
resource programs

• Interactive and automatic program repair

Focus of this talk
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Security type system

Judgement: pc,� `const e : S

pc,� ` e : S

Program counter Security context Indicate resource-aware 
noninterference

Expression security type 
(annotated with security 

labels)

• Under security setting    and    , e has type S and it 
has non-interference property 

• If judgements have const annotations then e satisfies 
resource-aware non-interference

� pc
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Enforcing resource-aware non-interference

• Two extreme ways: globally and locally enforcing

• Global reasoning: using the resource type system to 
check the whole program is constant-resource

- Sound but requires to reason about parts not 
affected by high securities

• Local reasoning: ensuring every condition branching 
on high security is constant-resource

- Not sufficient and efficient (rejects valid programs)



Global and local reasoning

• Security type system uses a mix of global 
and local reasoning 

• Ensure that every expression affected by 
high security is  

- a resource-aware non-interference, or 

- a part of a resource-aware non-   
interference (Total resource usage is 
constant)

E

resource-aware 
noninterference

EE
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E

Constant resource

E

Global reasoning

E1
 Not have resource-aware  

noninterference E2

Example: rule for cooperating with resource type system  



Proving constant-resource

Can waste potential Worst-case resource usage

Can create potential Best-case resource usage

Cannot waste or create potential Exact resource usage

• Based on the existing type system using potential method 
(potential encoded in program state to ‘pay’ resource 
consumption) 

• If final potential is zero then initial potential gives the 
constant-resource usage

Affine resource 
type system

Relevant resource 
type system

Linear resource type system
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Summary
• Notion of resource-aware noninterference  

• Security type system: combination of classic 
information flow and resource type systems  

• Interactive repair procedure 

• Implementation of both linear and polynomial resource 
consumption

Future work
• Reason about effects of compilation tools and 

hardware platforms


