Verifying and Synthesizing
Constant-Resource
Implementations with Types

Van Chan Ngo

Mario Dehesa-Azuara
Matt Fredrikson

Jan Hoffmann

S&P Oakland 2017

Classic non-interference

Program

Classic non-interference

Program

* No high security (H) flows to low security (L)

Classic non-interference

Program

* No high security (H) flows to low security (L)

* High security does not affect low security

Flow to resource consumption

Program

- -

Observable
- IHI
Key size in

behavior

Lcryptography ‘ L‘

] .
— —_—

Flow to resource consumption

Program
H H

Observable
behavior

Key size in H

Lcryptography “_‘ RC~

] .
— —_—

» Sizes of H (|[H|) and L (|L|) and resource consumption
(RC) are low securities

Flow to resource consumption

Program

- -

Observable
- IHI
Key size in

behavior

RC~

Lcryptography ‘ L‘

]]
— —_—

» Sizes of H (|[H|) and L (|L|) and resource consumption
(RC) are low securities

* Nothing about the information flow to RC

Flow to resource consumption

Program
H H

Observable
behavior

Key size in H

RC~

Lcryptography ‘ L‘

]]
— —_—

» Sizes of H (|[H|) and L (|L|) and resource consumption
(RC) are low securities

* Nothing about the information flow to RC

- Can H and [H| flow to RC (affect RC) ?

Example: Sequential search

Checks sequentially the list of items until a match for the
key is found

| Program
List Qutput

Key

Example: Sequential search

Checks sequentially the list of items until a match for the
key is found

| Program
List Qutput

List]

Key RC

Example: Sequential search

Checks sequentially the list of items until a match for the

key is found

List

List]

Key

Program

Qutput

RC depends on the
matching position

P

RC

Example: Sequential search

Checks sequentially the list of items until a match for the

key is found

List

List]

Key

Program

Qutput

RC depends on the
matching position

P

RC

* Problem: High security (List) affects low security (RC)

» Side channel attacks: By observing RC, List can be

learned

Resource-aware non-interference

| Program
List Qutput

Key RC

Resource-aware non-interference

| Program
List Qutput

Key RC
_—

* No high security (H) flows to low security (L)

Resource-aware non-interference

List

Key

* No high security (H) flows to low security (L)

Program

Qutput

RC

* All executions where sizes of high securities are fixed
produce (total) constant-resource consumption

Resource-aware non-interference

List

Key

* No high security (H) flows to low security (L)

Program

Qutput

RC

* All executions where sizes of high securities are fixed
produce (total) constant-resource consumption

* Thus, only sizes of Hs affect RC

Resource-aware non-interference

List

List]

Key

* No high security (H) flows to low security (L)

Program

Qutput

RC

* All executions where sizes of high securities are fixed
produce (total) constant-resource consumption

* Thus, only sizes of Hs affect RC

Resource-aware sequential search

let find(k,1l) =
let rec aux(k,1l,res) =
match 1 with
| [] => res
| X::Xs ->
1f x = k then
tick(l); aux(k,xs, true)
else
tick(l),; aux(k,xs, res)
in aux(k,1l, false)

Resource-aware sequential search

let find(k,1l) =
let rec aux(k,1l,res) =
match 1 with
| [] => res
| X::Xs8 —->
1f x = k then
tick(l),; aux(k,xs, true)
else
tick(l); aux(k,xs,res)
in aux(k,l, false)

Metric: function call

Resource-aware sequential search

Sequentially checks all items, total
of functional calls is length(l)

let find(k,1l) =
let rec aux(k,1l,res) =
match 1 with
| [] => res
| X::Xs8 —->
1f x = k then
tick(l),; aux(k,xs, true)
else
tick(l); aux(k,xs,res)
in aux(k,l, false)

Metric: function CaII]

Resource-aware sequential search

Well-typed Sequentially checks all items, total
program # of functional calls is length(l)

let fi\/nd(k, 1) =
let rec aux(k,1l,res) =
match 1 with
| [] => res
| X::Xs8 —->
1f x = k then
tick(l),; aux(k,xs, true)
else
tick(l); aux(k,xs,res)
in aux(k,l, false)

Metric: function CaII]

Solution: Quantitative language-based approach

Solution: Quantitative language-based approach

* Resource type system proves that resource
consumption is constant if input sizes are fixed

Solution: Quantitative language-based approach

* Resource type system proves that resource
consumption is constant if input sizes are fixed

* Security type system co-operating with resource type
system enforces resource-aware non-interference

Solution: Quantitative language-based approach

* Resource type system proves that resource
consumption is constant if input sizes are fixed

* Security type system co-operating with resource type
system enforces resource-aware non-interference

* Quantification of information leakage of non-constant-
resource programs

Solution: Quantitative language-based approach

* Resource type system proves that resource
consumption is constant if input sizes are fixed

* Security type system co-operating with resource type
system enforces resource-aware non-interference

* Quantification of information leakage of non-constant-
resource programs

* |nteractive and automatic program repair

Solution: Quantitative language-based approach

* Resource type system prove .
consumption is constant if | Focus of this talk

* Security type system co-opera#fig with resource type
system enforces resource-aware non-interference

* Quantification of information leakage of non-constant-
resource programs

* |nteractive and automatic program repair

Overview

Cost model Securltyllabel Program
mapping source code

I R A |

Security type Resource type
system system

Interactive Resource-aware
repair noninterterence

Security type system

Judgement: pc, [st ¢ G
pc,I'Fe: S

* Under security setting I'and pc, e has type S and it
has non-interference property

* |f Judgements have const annotations then e satisfies
resource-aware non-interference

Security type system

Program count&
pc, [st ¢ G

Judgement:

pc,I'Fe: S

* Under security setting I'and pc, e has type S and it
has non-interference property

* |f Judgements have const annotations then e satisfies
resource-aware non-interference

Security type system

Program CountQty context
pc, [st ¢ G

Judgement:

pc,I'Fe: S

* Under security setting I'and pc, e has type S and it
has non-interference property

* |f Judgements have const annotations then e satisfies
resource-aware non-interference

Security type system

Program CountQty context
pc, [st ¢ G

Judgement:
N

pc,I'Fe: S

EXxpression security type
(annotated with security
labels)

* Under security setting I'and pc, e has type S and it
has non-interference property

* |f Judgements have const annotations then e satisfies
resource-aware non-interference

Security type system

S , Indicate resource-aware
Program counter ecurity context noninterference
pc, [o™t e §

Judgement:
N

pc,I'Fe: S

EXxpression security type
(annotated with security
labels)

* Under security setting I'and pc, e has type S and it
has non-interference property

* |f Judgements have const annotations then e satisfies
resource-aware non-interference

Enforcing resource-aware non-interference

Enforcing resource-aware non-interference

* Two extreme ways: globally and locally enforcing

Enforcing resource-aware non-interference

* Two extreme ways: globally and locally enforcing

* Global reasoning: using the resource type system to
check the whole program is constant-resource

Enforcing resource-aware non-interference

* Two extreme ways: globally and locally enforcing

* Global reasoning: using the resource type system to
check the whole program is constant-resource

- Sound but requires to reason about parts not
affected by high securities

Enforcing resource-aware non-interference

* Two extreme ways: globally and locally enforcing

* Global reasoning: using the resource type system to
check the whole program is constant-resource

- Sound but requires to reason about parts not
affected by high securities

* Local reasoning: ensuring every condition branching
on high security Is constant-resource

Enforcing resource-aware non-interference

* Two extreme ways: globally and locally enforcing

* Global reasoning: using the resource type system to
check the whole program is constant-resource

- Sound but requires to reason about parts not
affected by high securities

* Local reasoning: ensuring every condition branching
on high security Is constant-resource

- Not sufficient and efficient (rejects valid programs)

Global and local reasoning

* Security type system uses a mix of global
and local reasoning

* Ensure that every expression affected by |fesource-aware
. S noninterference
high security Is

- a resource-aware non-interference, or

B

- a part of a resource-aware non-
interference (

)

Local reasoning

Local reasoning

Resource-aware
noninterference

Local reasoning

Resource-aware
noninterference

Local reasoning

Resource-aware
noninterference

<+>

|

Connection via low
security

Local reasoning

Resource-aware
noninterference

Connection via low
security

Local reasoning

Resource-aware
noninterference

Connection via low
security

Example: rule for low security condition

| const |const

*] et:S cc | ef:S km;h

| const

© if(z,e,er) : S

Global reasoning

Global reasoning

Not have resource-aware
noninterference <<

Global reasoning

Constant resource g

Not have resource-aware
noninterference <<

Global reasoning

Constant resource

Not have resource-aware
noninterference <<

Global reasoning

Constant resource

Not have resource-aware
noninterference <<

Example: rule for cooperating with resource type system

.-+ F—e:S const(e)

| const

| €ZS

Proving constant-resource

Affine resource Relevant resource

fype system fype system
\ [

VoL
Can waste potential ~ Worst-case resource usage

...

Cannot waste or create potential Exact resource usage
[

Linear resource type system]

« Based on the existing type system using potential method
(potential encoded in program state to ‘pay’ resource
consumption)

|t final potential is zero then initial potential gives the
constant-resource usage

Evaluation

Constant Function LOC Metric Resource Usage Time
cond_rev : (L(int), L(int), bool) — unit 20 steps 13n+13z+35 0.03s
trunc_rev : (L(int),int) — L(int) 28 function calls 1n 0.06s
ipquery : L(logline) — (L(int), L(int)) 86 steps 86n+99 0.86s
kmeans : L(float, float) — L(float, float) 170 steps 1246n+3784 8.18s
tea_enc : (L(int), L(int), nat) — L(int) 306 ticks 128n22+32nx2+1184n2+96n+1282+96 13.73s
tea_dec : (L(int), L(int), nat) — L(int) 306 ticks 128n22+-32nx2+1184n2+96n+962+96 14.34s

Evaluation

Common primitive

N

functions
Constant Function LOC Metric Resource Usage Time
cond_rev : (L(int), L(int), bool) — unit 20 steps 13n+13z+35 0.03s
trunc_rev : (L(int),int) — L(int) 28 function calls 1n 0.06s
ipquery : L(logline) — (L(int), L(int)) 86 steps 86n+99 0.86s
kmeans : L(float, float) — L(float, float) 170 steps 1246n+3784 8.18s
tea_enc : (L(int), L(int), nat) — L(int) 306 ticks 128n22+32nx2+1184n2+96n+1282+96 13.73s
tea_dec : (L(int), L(int), nat) — L(int) 306 ticks 128n22+-32nx2+1184n2+96n+962+96 14.34s

Evaluation

Common primitive

functions
Constant Function LOC Metric Resource Usage Time
cond_rev : (L(int), L(int), bool) — unit 20 steps 13n+13z+35 0.03s
trunc_rev : (L(int),int) — L(int) 28 function calls 1n 0.06s
ipquery : L(logline) — (L(int), L(int)) 86 steps 86n+99 0.86s
kmeans : L(float, float) — L(float, float) 170 steps 1246n+-3784 8.18s
tea_enc : (L(int), L(int), nat) — L(int) 306 ticks 128n22+32nx2+1184n2+96n+1282+96 13.73s
tea_dec : (L(int), L(int), nat) — L(int) 306 ticks 128n22+-32nx2+1184n2+96n+962-+96 14.34s

Constant-time block
encryption algorithm

v

Evaluation

" Common porimitive | " Database query

| //
Constant Function LOC // Metric Resource Usage Time
cond_rev : (L(int), L(int), bool) — unit 20 steps 13n+13z+35 0.03s
trunc_rev : (L(int),int) — L(int) 8 function calls 1n 0.06s
ipquery : L(logline) — (L(int), L(int)) 86 steps 86n-+99 0.86s
kmeans : L(float, float) — L(float, float) 150 steps 1246n+3784 8.18s
tea_enc : (L(int), L(int), nat) — L(int) 306 ticks 128n22+32nx2+1184n2+96n+1282+96 13.73s
tea_dec : (L(int), L(int), nat) — L(int) /\ 306 ticks 128n22+-32nx2+1184n2+96n+962-+96 14.34s

Constant-time block
encryption algorithm

Evaluation

Common primitive
functions

Database query
functions

Constant Function LOC / / Metric Resource Usage Time
cond_rev : (L(int), L(int), bool) — unit 20 steps 13n+13z+35 0.03s
trunc_rev : (L(int),int) — L(int) 8 function calls 1n 0.06s
ipquery : L(logline) — (L(int), L(int)) 86 steps 86n+99 0.86s
kmeans : L(float, float) — L(float, float) 170 steps 1246n+3784 8.18s
tea_enc : (L(int), L(int), nat) — L(int) 306 ticks 128n22+32nx2+1184n2+96n+1282+96 13.73s
ticks 128n22+-32nx2+1184n2+96n+962+96 14.34s

tea_dec : (L(int), L(int), nat) — L(int) /\ 306

Constant-time block

encryption algorithm

\

Cost models

Summary

 Notion of resource-aware noninterference

* Security type system: combination of classic
information flow and resource type systems

* |nteractive repair procedure

* |Implementation of both linear and polynomial resource
consumption

Future work

* Reason about effects of compilation tools and
hardware platforms

