
Noname manuscript No.
(will be inserted by the editor)

Modular Translation Validation of a Full-sized Synchronous
Compiler using Off-the-shelf Verification Tools

Van Chan Ngo · Jean-Pierre Talpin · Thierry
Gautier · Loïc Besnard · Paul Le Guernic

Received: date / Accepted: date

Abstract This work demonstrates a scalable, modular, and refinable methodology
for translation validation applied to a mature (20 years old), large (500K lines of
C), and open source (Eclipse/Polarsys IWG project POP) code generation suite,
all by using off-the-shelf and open-source SAT/SMT verification tools (Yices), by
adapting and optimizing the translation validation principle introduced by Pnueli et
al. in 1998. In face of the enormous task at hand, the verification of a large compiler
infrastructure, we devised to narrow down and isolate the problem to the very data-
structures manipulated by the infrastructure at the successive phases of the compilation,
in order to both optimize the whole verification process and make the implementation
of a working prototype at all doable. Our presentation outlines the successive steps of
this endeavour, from clock synthesis, static scheduling to target code production.

Keywords Formal Verification · Translation Validation · Certified Compiler ·
SAT/SMT Solver · Synchronous Languages · Graph Transformation

1 Introduction

Synchronous languages [6,28,35] offer formal semantic frameworks to design safety-
critical systems, from their formal specification to their implementation as automat-
ically generated code. Safety-critical systems are those systems whose reliability is
crucial. Domains of applications include avionics and automotive systems, medical
technology, telecommunication and control of industrial plants. In such systems, the
violation of some constraints may lead to serious consequences, including loss of
mission, environmental damage or even loss of life. Thus it is an essential task in the

Van Chan Ngo · Jean-Pierre Talpin · Thierry Gautier · Paul Le Guernic
INRIA, 35042 Rennes, France
E-mail: first.lastname@inria.fr

Loïc Besnard
CNRS/IRISA, 35042 Rennes, France
E-mail: loic.besnard@irisa.fr

2 Ngo, Talpin, Gautier, Besnard, and Le Guernic

development of safety-critical systems to be able to prove their reliability [31]. Since
synchronous languages are based on formal semantic models, they provide much
higher level of abstraction, expressivity, and clarity at source level rather than once
compiled into C code for instance. That makes the application of formal methods much
simpler to enforce safety properties. But there is a clear need that such safety prop-
erties, specified at source level, are ensured to be preserved through implementation.
However, compilers of synchronous languages are large and complex programs which
often consist of hundreds of thousands lines of code, divided into numerous packages.
Moreover, compiler modules often interact in sophisticated ways, and the design and
implementation of a compiler are substantial engineering tasks. Compilation involves
analyzes, transformations, optimizations, some introducing new information, some
refining or specializing the program’s behavior to meet safety goals.

In this work, we demonstrate a translation validation approach, applied to a full-
sized compiler of the polychronous data-flow language Signal. This compiler is a
mature (20 years old), large (500k lines of C and C++), and open source (Eclipse/Po-
larsys IWG project POP) code generation suite for the Signal language1. Translation
validation was introduced by Pnueli et al. in [51] as an approach to verify the cor-
rectness of translators (compilers, code generators). The main idea of translation
validation is that instead of proving the correctness of a compiler, each of its individual
translations (e.g., run of the code generator) is followed by a validation phase to check
that the target program correctly implements the source specification. A translation
validator consists of two objects:

– The Model Builder is a simple module that formally represents the semantics of
the source and target programs of the translator (e.g., as labeled transition system
or first-order logic formula).

– The Analyzer formalizes correctness as a refinement relation between the models
of the source and target of the validator. The analyzer provides an automated
proof method on the existence of the refinement between the formal models.
If the analyzer succeeds, a proof script is created. If it does not, it generates a
counterexample, which can be decompiled to help spot the error.

Translation validation does not modify or instrument the compiler. It treats it as
a “black box”. It only considers the input program and its compiled result. Hence,
it is not affected by updates and modifications to the compiler, as long as its data
structures remain the same. In general, the validator is much simpler and smaller than
the compiler itself. Thus, the proof of correctness of the validator takes less effort than
that of the compiler. Furthermore, verification is fully automated and scales to large
programs.

The remainder of this article is organized as follows. Section 2 presents some
related works about formal verification of compilers, including translation validation.
Section 3 introduces the principles of our modular translation validation approach,
applied to the Polychrony compiler of the Signal language. Then, Sections 4, 5
and 6 detail the three phases of this translation validation method, corresponding
to the three main phases of the compiler. These are respectively preservation of

1 http://www.irisa.fr/Polychrony

http://www.irisa.fr/Polychrony

Modular Translation Validation of a Synchronous Compiler 3

clock models, preservation of data dependencies and value-equivalence of variables.
All these translation validation phases are illustrated using a simple representative
Signal program. A few bugs have been detected in the Signal compiler thanks to
the application of this method; they are described in Section 7. Finally, Section 8
concludes our work and outlines future directions.

2 Related Work

Formal verification of the correctness of a compiler can be based on the examination
of the developed compiler’s source code itself, meaning that a qualification process
applies on the development of the compiler, the source of the compiler, and/or the com-
piler’s output. Qualifying a compiler is rare because of the tremendous administrative
effort involved. Qualification amounts to demonstrate the compliance with all recom-
mendations and objectives specified in the certification standards for safety-critical
software: DO-178C and its European equivalence ED-12. This provides users a way
to demonstrate that the properties established in the source code still hold in the object
code. In order to fulfil this objective, DO-178C recommends a proof that requirements
at source-code level can be traceable down to the object code [36,15], including the
integration of software onto its hardware execution platform. Although DO-178C has
been successful in industry, the cost of complying with it is significant: the activities
on verification it incurs may well cost seven times more than the development effort
needed [56].

A more traditional method is therefore to solely inspect or formally verify the
compiler’s output. This task requires less unitary effort, but has to be repeated every
time target code is generated. For instance, Astrée [3,10] is a special-purpose static
program analyzer based on abstract interpretation to verify the absence of run time
errors in the C code generated from SCADE programs. Another example, the Su-
perTest suite [1], is one of the most comprehensive test and validation suites to verify
compilers. It contains a large collection of more than 3 millions test programs. The
tool interprets the test set definition and test run parameters. Then, it feeds the tests to
the compiler. It might run the resulting programs to assert that the compiler passed by
the test.

One last resort is to formally verify the correctness of the compiler itself. There
are two approaches, in general, to prove the correctness of a compiler using formal
methods. One approach consists of specifying the intended behavior of the compiler
in a specification language as a formal model and of building a proof to show that
the compiler behaves exactly as prescribed by requirements. The second approach
consists of examining the source and compiled programs in order to prove that, for
each run of the compiler, the semantics of the source program is preserved. Many
correctness proofs of compiler implementations based on the two above approaches
have been carried out, formal verification of the compiler itself [59,53,16,13] or the
verification of its compiled code [51,50,55,43,62,52,33,37].

A recent and typical example of compiler correctness proof is that of [13]. In
this example, the correctness of the whole Iterated Register Coalescing (IRC) algo-
rithm [27] is formally verified. The verification process works in cooperation with

4 Ngo, Talpin, Gautier, Besnard, and Le Guernic

the proof assistant Coq [18]. The input of IRC is an interference graph and a palette
of colors, the output is the colored graph. The interference graph is first defined in a
purely functional language, Gallina, and implemented in the Coq prover. Then IRC
is written in Gallina. The implementation of the abstract interference graph and the
operations of the algorithm are formally proved to be correct. The verified program
is translated automatically into OCaml code that can be plugged in the CompCert
compiler to provide correct register allocation.

A compiler is a large and very complex program which often consists of hundreds
of thousands, if not millions, lines of code, and is divided into multiple sub-systems
and modules. In addition, each compiler implements a particular algorithm in its own
way. This brings two main drawbacks of the formal verification of the compiler itself
approach. First, constructing the specifications of the actual compiler implementation
is a long and tedious task. Second, the correctness proof of a compiler implementation,
in general, cannot be reused for another compiler.

To deal with these drawbacks of formally verifying the compiler itself, one can
prove that the source program and the compiled program are semantically equivalent,
which is the approach of translation validation. A pioneering contribution to this area
was the work of Pnueli et al. [51,50] to prove the correctness of the code generator
from Signal programs to C programs. Pnueli et al. formalized the semantics of a Signal
program and the generated C code in terms of Synchronous Transition Systems (STS).
A STS consists of the set of states, the set of initial sates and a transition relation. The
running of a program is represented by a computation of STS which is an infinite
sequence of states σ = 〈s0, s1, s2, . . .〉 such that s0 is an initial state and si+1 is the
successor state of si, for all i ∈ N. The set of all possible computations represents
the semantics of the program. Given a computation σ, an observation is an infinite
sequence of values by applying the observation function on each state of σ. Then,
the authors formalize the concept of “correct translation” as a refinement between
two STSs which expresses that the semantics of the source program is preserved at
the compiled program, meaning that for any observation of the STS of the compiled
program, it is also the observation of the STS of the source program. The refinement is
generated as a set of verification conditions, and it is proved by the use of a solver such
as SMT solver. Technically, the drawback of this approach is that it does not capture
explicitly the clock semantics and in some cases, the code generator eliminates the
use of local register variables in the generated code and then, the mapping cannot be
established. Additionally, for a large program, the formula is very large, including
numerical expressions that induce some inefficiency. Moreover, the whole calculation
of a synchronous program or the generated code is considered as one atomic transition
in STS, thus it does not capture the data dependencies between signals.

Zuck et al. [63,62,41,51] introduce a methodology to validate optimizations by
generating a set of verification conditions and using a theorem prover. The main idea
of their work is that the validator generates a set of verification conditions based on
an invariant for intra-procedural optimizations. The invariant for an intra-procedural
optimization is composed of:

– a relation between the nodes in the control-flow graphs;
– a relation between the program states (e.g., contents of registers, stacks. . .);

Modular Translation Validation of a Synchronous Compiler 5

– invariants for the individual input and output programs.

This set of verification conditions indicates the program equivalence for finite slices of
program executions. That implies that the optimized program is a correct refinement
of the input program.

A representative example is the CompCert project [17]. The CompCert compiler
is a formally verified compiler for the C language. The compiler is mostly written
in the functional programming language Gallina. The implementation is formally
verified and automatically translated into OCaml code by Coq. Some representative
works of the project are carried out by Blazy et al. [12,11,21] and Leroy et al. [40,
38,39]. For instance, the work of Leroy [39] describes the correctness proof of the
code generation, the back-end of the CompCert compiler, from a low-level, imperative
intermediate language C-minor into optimized PowerPC assembly code, using the
Coq proof assistant.

Inspired by the work of the CompCert compiler, the formal development of a
code generator based on a correct-by-construction components method is carried out
in the GeneAuto project [26,30,29]. The GeneAuto code generator takes as input a
functional description of a system specified in a high-level modeling language (e.g.,
Simulink, Stateflow) and generates C code as output.

Another related work which adopts the translation validation approach in veri-
fication of optimizations, Tristan et al. [61,60], recently proposed a framework for
translation validation of an LLVM optimizer. For a function and its optimized coun-
terpart, they construct a shared value-graph. The graph is normalized (it is reduced).
After the normalization, if the outputs of two functions are represented by the same
subgraph, they can safely conclude that both functions are equivalent.

On the other hand, Tate et al. [58] propose a framework for translation validation.
Given a function in the input program and the corresponding optimized version of
the function in the output program, they compute two value-graphs to represent the
computations of the variables. Then they transform the graph by adding equivalent
terms through a process called equality saturation. After the saturation, if both value-
graphs are the same, they can conclude that the return value of two given functions are
the same. For translation validation purpose, our normalization process in Section 6 is
more efficient and scalable since we can add rewrite rules into the validator that reflect
what a typical compiler intends to do (e.g., if a compiler performs constant folding
optimization, then we can add rewrite rules for constant expressions such that a three
nodes subgraph (1 + 2) is replaced by a single node 3).

Gamatié et al. [23,24,20] introduce an approach to statically analyze Signal
programs for efficient code generation. The main idea of their work is that the clocks
and clock relations are formalized as first-order logic formulas with the help of interval-
Boolean abstraction technique. This work aims to remove the dead-code segments
(e.g., segment of code to compute a data-flow which is always absent). The dead-code
segments are identified by detecting the existence of empty clocks, mutual exclusion
of two or more clocks, or clock inclusions. The reasoning on the logic formulas is
done using a SMT solver. With the interval abstraction, the analysis of clock hierarchy
is more precise and more efficient when dealing with numerical expressions.

6 Ngo, Talpin, Gautier, Besnard, and Le Guernic

3 Modular Translation Validation

Our approach is to scale translation validation not only in a modular fashion, by de-
composing the problem into the successive transformations performed by the compiler
on the intermediate representation of a program [47], but by narrowing it further to the
actual data structure that is being used to represent the transformation problem and the
actual algorithmic operations performed on it. In all cases, we show that translation
validation is amenable to simple SAT/SMT verification (the semantic inclusion of one
data structure into another) instead of the more general problem of simulation-based
conformance-checking of the transformed program w.r.t. the input program [44,46,
45].

3.1 The Signal Compiler

Historically related to the synchronous programming paradigm, the polychronous
model of computation, implemented in the data-flow language Signal and its infras-
tructure Polychrony, stands apart by the capability to model multi-clocked systems.
A source Signal program is the synchronous composition of discrete equations on
signals, e.g. x := y + 1 | y := x$1 defines x by y + 1 at all times (discrete logical
instants) and y by the value of x delayed by 1 evaluation tick. Its compilation may be
seen as a sequence of morphisms that refine and rewrite the source specification with
information gained from analysis. C or Java code production, e.g., y = x; x = y + 1, is
performed on ultimately transformed program.

We briefly recall here the primitive operators of the core language:
1/ Stepwise Functions on flows, y := f (x1, . . . , xn) for f denoting a function on values
(y, x1, . . . , xn are defined at the same logical instants: they have the same clock);
2/ Delay y := x$1 init a (where a is a constant value): y and x are defined at the
same logical instants and at any of these instants, y holds the previous value of x;
3/ Sampling y := x when b (b is a Boolean signal): y holds the value of x when x is
present and b is present and true;
4/ Merge y := x default z: y holds the value of x when x is present, otherwise it
holds the value of z when z is present.
The following notations (which are derived operators) are used to manipulate clocks,
represented as signals of type event, true if and only if present: clock z := x̂ (present,
and true, when x is present); synchronization x ˆ = y; clock union z := x ˆ+ y;
clock product z := x ˆ∗ y; clock difference z := x ˆ− y; clock selection z := when b
(present, and true, when the Boolean signal b is present and true).

A process is a system of equations. The composition of two processes P and Q
is a process written P | Q, defined by the set of behaviors that satisfy both P and Q
constraints. The restriction P where x, where x is a signal defined in a process P, is
a process in which x is considered as a local variable in P. The reader is referred to
the Signal bibliography [7,22] for a more detailed description. The Signal compiler
provided by Polychrony is an open source 500k lines big software. Schematically, the
compilation process [5,8,42] can be divided into three phases depicted in Fig. 1 (top
row).

Modular Translation Validation of a Synchronous Compiler 7

*.SIG *_BASIC_TRA.SIG *_BOOL_TRA.SIG *_SEQ_TRA.SIG C/C++, Java

Clock calculation,
Boolean abstraction Scheduling Code generation

Clock
model

Clock
model

Clock
Refin
ement

Clock
Refin
ement

Clock
model

Signal Compiler

Validator

SDDG

SDDG

SDDG
Refinement

SDVG

SDVG

SDVG
Normalizing

Preservation of clock
semantics

Preservation of data
dependency

Preservation of value-
equivalence of variables

Fig. 1 Translation validation for the Signal compiler

– Clock synthesis. This stage determines the clock of all signals in the program and
defines a Boolean abstraction of this program. The clock of a signal defines the
instants at which the value of the signal shall be evaluated.

– Static scheduling synthesis. Based on the clock information and the Boolean
abstraction obtained at the first stage, the compiler constructs a Conditional De-
pendency Graph (CDG), which represents the schedule of signals’ evaluations.

– Code generation. Sequential C or Java code is directly generated from the structure
of the clocked and scheduled Signal program.

3.2 Towards a Formally Verified Signal Compiler

Translation validation is decomposed into the proof of clock semantics preservation
(clock synthesis phase) and that of data dependencies (scheduling synthesis phase).
Value-equivalence of variables can then be checked at the code generation phase. Fig. 1
shows the integration of this verification framework into the compilation process of
the Signal compiler. For each phase, the validator takes the source program and its
compiled counterpart, and constructs the corresponding formal model of the programs.
Then, it checks the existence of the refinement relation to prove the preservation of the
considered semantics. If the result is that this relation does not exist then a “compiler
bug” message is emitted. Otherwise, the compiler continues its work.

Given a source program A, a compilation phase performed by the Signal compiler
can be considered as a function Cpsig from a set of source programs to a set of compiled
programs plus compilation error: Ps −→ Pc ∪ {Error}. We denote the compiled
program of A by Cpsig(A) = C and the compilation error by Cpsig(A) = Error.

8 Ngo, Talpin, Gautier, Besnard, and Le Guernic

Consider a validator Val which adopts the translation validation approach. The
validator can be represented as a function from the set of pairs of a source program
and its compiled program to the set of Boolean values: Ps × Pc −→ B. The validator
that we want to build satisfies the following property:

∀A ∈ Ps,C ∈ Pc,Cp(A) = C,Val(A, C) = true ⇒ Correct(A, C)

where Correct(A, C) denotes the correctness property between the source program A
and its compiled program C. We now associate each run of the compiler, Cpsig, with
the validator Val. The function Cpsig

Val defines a formally verified compilation process
from Ps to Pc plus compilation error. The derived Signal compiler, associated with the
validator in Fig. 1, can be defined by the following function from Ps to Pc ∪ {Error}.

Cpsig
Val(A) =



C if Cpsig(A) = Cclk,Cpsig(Cclk) = Cdep,Cpsig(Cdep) = C and
Val(A, C) = true

Error if Cpsig(A) = Cclk,Cpsig(Cclk) = Cdep,Cpsig(Cdep) = C and
Val(A, C) = false

Error if Cpsig(A) = Error or Cpsig(Cclk) = Error or
Cpsig(Cdep) = Error

Cclk and Cdep are the intermediate forms of the source program A as the outputs of the
clock synthesis phase and scheduling synthesis phase, respectively. They have an ex-
plicit textual representation as Signal programs (with added synthesized definitions of
clocks and explicit dependencies). C is the generated C program from the intermediate
form Cdep. Val(A, C) = true if and only if Val(A, Cclk) = true, Val(Cclk, Cdep) = true,
and Val(Cdep, C) = true.

4 Preservation of Clock Models

This section focuses on constructing a validator that proves the preservation of clock
semantics in the clock synthesis phase of the Signal compiler. The clock semantics of
the source program and its transformed counterpart are formally represented as clock
models. A clock model is a first-order logic formula with uninterpreted functions.
This formula deterministically characterizes the presence/absence status of all discrete
data-flows (input, output and local variables of a program) at any logical instant. Given
two clock models, a correct transformation between them is checked by the existence
of a refinement relation, which expresses preservation of clock semantics.

4.1 Clock Model

In Signal, clocks play a much more important role than in other synchronous languages:
they are used to express the underlying control (i.e., synchronization between signals).
This differs in particular from Lustre, where all clocks are built by sampling the fastest
clock. Consider the basic process y := x when b defined by the primitive operator

Modular Translation Validation of a Synchronous Compiler 9

sampling, where x and y are numerical signals, for instance, and b is a Boolean one.
To express the control, we need to represent the status of the signals x, y and b. We
use a Boolean variable x̂ to capture the status of x: (x̂ = true) means x is present,
and (x̂ = false) means x is absent. In the same way, the Boolean variable ŷ captures
the status of y. For the Boolean signal b, two Boolean variables, b̂ and b̃, will be used
to represent its status: (b̂ = true ∧ b̃ = true) means b is present and holds a value
true; (b̂ = true ∧ b̃ = false) means b is present and holds a value false; and
(b̂ = false) means b is absent. Hence, at any given instant, the clock relations of the
equation above can be encoded by the formula: ŷ⇔ (x̂ ∧ b̂ ∧ b̃).

4.1.1 Abstraction

Let X = {x1, . . . , xn} be the set of all signals in a program P, consisting of input, output,
register (corresponding to delay operator), and local signals, denoted by I, O, R and L,
respectively. With each signal xi, based on the encoding scheme proposed in [24], we
attach a Boolean variable x̂i to encode its clock and a variable x̃i of same type as xi to
encode its value. The composition of processes corresponds to logical conjunctions.
Thus the clock model of P will be a conjunction Φ(P) =

∧n
i=1 φ(eqi), whose atoms

are x̂i, x̃i, where φ(eqi) is the abstraction of statement eqi, and n is the number of
statements in the program. In the following, we present the abstraction corresponding
to each Signal operator.
Stepwise Functions. The functions which apply on signal values in the stepwise
functions are usual logic operators (not, and, or), numerical comparison functions
(<, >, =, <=, >=, /=), and numerical operators (+, −, ∗, /). In our experience working
with the Signal compiler, it performs very few arithmetical optimizations and leaves
most of the arithmetical expressions intact. Moreover, for Signal programs from
which deterministic code can be generated, every signal definition is determined
explicitly by the input and register signals. This suggests that numerical expressions
can be abstracted by uninterpreted functions [50,24]. By following the encoding
procedure of [2], for every numerical comparison function and numerical operator
(denoted by �) occurring in an equation, we perform the following rewriting: i)
Replace each x � y by a new variable vi

� of the same type as the return value. Two
stepwise functions x � y and x′ � y′ are replaced by the same variable vi

� iff x, y
are identical to x′ and y′, respectively; ii) For every pair of newly added variables
vi
� and v j

�, i , j, corresponding to the non-identical occurrences x � y and x′ � y′,

add the implication (x̃ = x̃′ ∧ ỹ = ỹ′) ⇒ ṽi
� = ṽ j

� into the abstraction Φ(P). The
abstraction φ(y := f (x1, ..., xn)) of stepwise functions is defined by induction as
follows: φ(true) = true and φ(false) = false; φ(y := x) = (ŷ ⇔ x̂) ∧ (ŷ ⇒
(̃y = x̃)); if x is an event signal, φ(y := x) = (ŷ ⇔ x̂) ∧ (ŷ ⇒ (̃y = x̃)) ∧ (x̂ ⇒ x̃);
φ(y := not x) = (ŷ ⇔ x̂) ∧ (ŷ ⇒ (̃y ⇔ ¬x̃)); φ(y := x1 and x2) = (ŷ ⇔ x̂1 ⇔

x̂2) ∧ (ŷ⇒ (̃y⇔ x̃1 ∧ x̃2)); φ(y := x1 or x2) = (ŷ⇔ x̂1 ⇔ x̂2) ∧ (ŷ⇒ (̃y⇔ x̃1 ∨ x̃2));
φ(y := x1 � x2) = (ŷ⇔ v̂i

� ⇔ x̂1 ⇔ x̂2) ∧ (ŷ⇒ (̃y = ṽi
�)).

Delay. Considering the delay operator, y := x$1 init a, its encoding φ(y :=
x$1 init a) contributes to Φ(P) with the following conjunct: (ŷ ⇔ x̂) ∧ (ŷ ⇒
((̃y = m.x) ∧ (m.x′ = x̃))) ∧ (m.x0 = a). This encoding requires that at any instant,

10 Ngo, Talpin, Gautier, Besnard, and Le Guernic

signals x and y have the same status (present or absent). To encode the value of the
output signal as well, we introduce a memorization variable m.x that stores the last
value of x. The next value of m.x is m.x′ and it is initialized to a in m.x0.
Sampling. The encoding of the sampling operator, y := x when b, contributes to Φ(P)
with the following conjunct: (ŷ⇔ (x̂ ∧ b̂ ∧ b̃)) ∧ (ŷ⇒ (̃y = x̃)).
Merge. The encoding of the merge operator, y := x default z, contributes to Φ(P)
with the following conjunct: (ŷ⇔ (x̂ ∨ ẑ)) ∧ ŷ⇒ ((x̂ ∧ (̃y = x̃)) ∨ (¬x̂ ∧ (̃y = z̃)))).
Composition. Consider the composition of two processes P1 and P2. Its abstraction
φ(P1|P2) is defined as follows: φ(P1) ∧ φ(P2).
Clock Relations. Given the above rules, we can obtain the following abstraction for
derived operators on clocks. Here, z is a signal of type event: φ(z := x̂) = (ẑ ⇔
x̂) ∧ (ẑ ⇒ z̃); φ(x ˆ = y) = x̂ ⇔ ŷ; φ(z := x ˆ+ y) = (ẑ ⇔ (x̂ ∨ ŷ)) ∧ (ẑ ⇒ z̃);
φ(z := x ˆ∗ y) = (ẑ⇔ (x̂ ∧ ŷ)) ∧ (ẑ⇒ z̃); φ(z := x ˆ− y) = (ẑ⇔ (x̂ ∧ ¬ŷ)) ∧ (ẑ⇒ z̃);
φ(z := when b) = (ẑ⇔ (b̂ ∧ b̃)) ∧ (ẑ⇒ z̃).

Example. Consider the Signal program DEC (Listing 1), which counts through the
output N from the value of input FB to 1. It can be observed that the clock of the output
signal is more frequent than that of the input. The diagram in Listing 2 illustrates one
possible behavior of the program.

1 process DEC =
2 (? integer FB; ! integer N;) % FB: input signal, N: output signal %
3 (| FB =̂ when (ZN<=1) % ZN holds a value smaller than 1, FB is present %
4 | N := FB default (ZN-1)
5 | ZN := N$1 init 1 % ZN takes the previous value of N %
6 |)
7 where integer ZN; end; % ZN is defined as local signal %

Listing 1 Signal program DEC

1 t
2 FB 6 ⊥ ⊥ ⊥ ⊥ ⊥ 3 ⊥ ⊥ 2
3 ZN 1 6 5 4 3 2 1 3 2 1
4 N 6 5 4 3 2 1 3 2 1 2

Listing 2 An execution trace of DEC

Applying the abstraction rules above, the clock semantics of DEC is represented by
the following formula Φ(DEC), where ZN <= 1 and ZN − 1 are replaced by two fresh
variables ZN1 and ZN2, and encoded by two uninterpreted function symbols v1<= and
v1−, respectively:

(F̂B⇔ ẐN1 ∧ Z̃N1) ∧ (ẐN1⇔ v̂1
<= ⇔ ẐN) ∧ (ẐN1⇒ (Z̃N1 = ṽ1

<=))
∧ (ẐN ⇔ N̂) ∧ (ẐN ⇒ (Z̃N = m.N ∧ m.N′ = Ñ)) ∧ (m.N0 = 1)
∧ (N̂ ⇔ F̂B ∨ ẐN2) ∧ (N̂ ⇒ ((F̂B ∧ Ñ = F̃B) ∨ (¬F̂B ∧ Ñ = Z̃N2)))
∧ (ẐN2⇔ v̂1

− ⇔ ẐN) ∧ (ẐN2⇒ (Z̃N2 = ṽ1
−))

In the following, we will denote input, output, register, memorization and local vari-
ables used in a clock model by Iclk,Oclk,Rclk,Mclk and Lclk, respectively. Note that the
memorization variables are introduced by the abstraction.

Modular Translation Validation of a Synchronous Compiler 11

Definition 1 (Clock configuration) Consider a clock model Φ(P) over a set of vari-
ables X̂. A clock configuration Î is an interpretation over X̂ such that it is a model of
the first-order logic formula Φ(P).

For instance, (F̂B 7→ true, N̂ 7→ true, ẐN 7→ true, F̃B 7→ 6, Ñ 7→ 6, Z̃N 7→ 1) is a
clock configuration of Φ(DEC).

4.1.2 Concrete Clock Semantics

We rely on the basic elements of trace semantics [34] to define the clock semantics
of a Signal program. For each xi ∈ X, we use Dxi to denote its domain of values, and
D⊥xi

= Dxi ∪ {⊥} extends this domain of values with the absent value ⊥, where ⊥ < Dxi .
The extended domain of values of X is defined as D⊥X =

⋃n
i=1 Dxi ∪ {⊥}.

Definition 2 (Clock events, clock traces) Given a non-empty set X, the set of clock
events on X, denoted by EcX , is the set of all possible interpretations I over X. The
set of clock traces on X, denoted by T cX , is defined by the set of functions Tc defined
from the set N of natural numbers to EcX , denoted by Tc : N −→ EcX .

An interpretation I is an assignment of values from X to D⊥X . The assignment I(x) = ⊥

means that x holds no value, while I(x) = v means that x holds the value v. Natural
numbers represent instants t = 0, 1, 2, . . . A trace Tc is a chain of clock events. We
denote the interpreted value of a variable xi at instant t by Tc(t)(xi).

Definition 3 (Restriction clock trace) Given a non-empty set X, a subset X1 ⊆ X,
and a clock trace Tc being defined on X, the restriction of Tc onto X1 is denoted by
X1.Tc. It is defined as X1.Tc : N −→ EcX1 such that ∀t ∈ N,∀x ∈ X1, X1.Tc(t)(x) =

Tc(t)(x).

Let X be the set of all signals in a program P. We write [[P]]c to denote the clock
semantics of P, which is defined as the set of all possible clock traces on X. For any
subset X1 ⊆ X, the set of all restriction clock traces on X1 defines the clock semantics
of P on X1, denoted by ([[P]]c)\X1 .

Let Φ(P) be the clock model of the program P. We now define the concrete clock
semantics of a clock model based on the notion of clock configuration. Given a clock
configuration Î, the set of clock events according to Î is the set of interpretations I such
that for every signal xi, if xi holds a value then x̂i has the value true (xi is present),
and x̃i holds the same value as xi. Otherwise, x̂i has the value false (meaning xi is
absent). The set of clock events according to Î and the set of all clock events of Φ(P)
are computed as follows:

S EcX (Î) = {I ∈ EcX | ∀xi ∈ X, (I(xi) = Î(x̃i) ∧ Î(x̂i) = true)
∨(I(xi) = ⊥ ∧ Î(x̂i) = false)}

S EcX (Φ(P)) =
⋃

Î|=Φ(P) S EcX (Î)

With a set of clock events S EcX (Φ(P)), the concrete clock semantics of Φ(P) is defined
by the following set of clock traces: Γ(Φ(P)) = {Tc ∈ T cX | ∀t,Tc(t) ∈ S EcX (Φ(P))}.
For any subset X1 ⊆ X, the concrete clock semantics of Φ(P) on X1 is defined as
Γ(Φ(P))\X1 = {X1.Tc| Tc ∈ T cX and ∀t,Tc(t) ∈ S EcX (Φ(P))}. Due to the lack of space,
we do not present the proof of soundness of our abstraction.

12 Ngo, Talpin, Gautier, Besnard, and Le Guernic

4.2 Clock Model Translation Validation

We adopt the translation validation approach [51,50] to formally verify that the clock
semantics is preserved for every transformation of the compiler. In order to apply
the translation validation to the transformations, we capture the clock semantics of
the original program and its transformed counterpart by means of clock models. We
introduce a refinement relation which expresses the preservation of clock semantics,
as relation on clock models.

4.2.1 Clock Refinement

Let Φ(A) and Φ(C) be two clock models of programs A and C, to which we refer
respectively as a source program and its transformed counterpart produced by the
compiler. We denote the sets of all signals in A and C by XA and XC , respectively.
The corresponding sets of variables which are used to construct the clock models are
denoted by X̂A and X̂C . Consider the finite set of common signals X = XA ∩XC and the
set of common variables which are used to construct the clock models, X̂ = X̂A ∩ X̂C .
We say that A and C have the same clock semantics on X if Φ(A) and Φ(C) have the
same set of concrete restriction clock traces on X:

∀Tc.(X.Tc ∈ Γ(Φ(C))\X ⇔ X.Tc ∈ Γ(Φ(A))\X)

In fact, the compilation makes the transformed program more concrete. For instance,
when the Signal compiler performs “endochronization”, which is used to generate
sequential executable code [8], the signal with the fastest clock is considered as al-
ways present. Moreover, the compiler performs transformations and optimizations for
removing or eliminating some redundant behaviors of the source program (e.g., elimi-
nation of subexpressions, trivial clock relations). Consequently, the above requirement
is too strong to be practical. Hence, we have to relax it as follows:

∀Tc.(X.Tc ∈ Γ(Φ(C))\X ⇒ X.Tc ∈ Γ(Φ(A))\X)

It expresses that every restriction clock trace of Φ(C) is also a clock trace of Φ(A) on
X, or Γ(Φ(C))\X ⊆ Γ(Φ(A))\X . We say that Φ(C) is a correct clock transformation of
Φ(A), or Φ(C) is a clock refinement of Φ(A) on X, denoted by Φ(C) vclk Φ(A).

Proposition 1 The clock refinement is reflexive and transitive.

Proof Proposition 1 is proved based on the clock refinement definition.Φ(P) vclk Φ(P)
since Γ(Φ(P))\X ⊆ Γ(Φ(P))\X . For every clock trace X.Tc ∈ Γ(Φ(P1))\X , Φ(P1) vclk

Φ(P2) on X implies X.Tc ∈ Γ(Φ(P2))\X . Since Φ(P2) vclk Φ(P3) on X, we have
X.Tc ∈ Γ(Φ(P3))\X , or Φ(P1) vclk Φ(P3) on X. ut

4.2.2 Adaptation to the Signal Compiler

We have to adapt the definition of the above general clock refinement to the case of
the Signal compiler [8]. A first consideration is that programs take inputs from both
their environment and register values. Then, they compute outputs to react with the

Modular Translation Validation of a Synchronous Compiler 13

environment. Programs may use also local variables to perform output calculations.
However, from the outside, the natural observation of the programs is the snapshot
of the values of the input and output signals. In our context, it is the snapshot of
the presence of the input and output signals. For example, for the program DEC, the
observation is the tuple of the presence of the signals (FB, N) at a given instant.

A second consideration is that local signals in the source program do not neces-
sarily have counterparts in the transformed program. Conversely, all input and output
signals are preserved in the transformations and are represented by identical names
in the source and transformed programs. Moreover, all signals in the R set are also
preserved in the transformations. Therefore, it is natural to choose the snapshot of
the presence of the input and output signals to be the observation for the transformed
program.

These considerations let us adapt the above definition of clock refinement as
follows. Let XA and XC be the sets of all signals in the source program A and its
counterpart transformed program C. We write XIO to denote the set of common input
and output signals. We say that C is a correct transformation of A if at any instant, the
tuples of values representing the presence of the signals in XIO are the same in both
programs. Formally, Φ(C) vclk Φ(A) on XIO.

4.2.3 Proving Clock Refinement by SMT

Our aim is proving that Φ(C) refines Φ(A) on XIO. Let X̂A, X̂C , X̂IO be the set of
variables which are used to construct Φ(A) and Φ(C), and the set of common variables
between the two clock models. For every variable in the clock model Φ(C) except the
common variables in X̂IO, we added “c” as superscript to distinguish them from the
variables in the clock model of the source program. The standard way of proving the
existence of the clock refinement is based on the following elements:

• The identification of a mapping of variables that maps the non-input/output vari-
ables from the clock model Φ(C) to the non-input/output variables in the clock
model Φ(A). This mapping expresses a relation X̂C \ X̂IO → X̂A \ X̂IO; we denote
it by: X̂A \ X̂IO = α(X̂C \ X̂IO).

• The premises of a rule such that if the premises hold, then the conclusion, Φ(C)
refines Φ(A), is true. The premise is presented in Fig. 2.

For a mapping of variables X̂A \ X̂IO = α(X̂C \ X̂IO),
Premise ∀Î over X̂A ∪ X̂C .(Î |= Φ(C)⇒ Î |= Φ(A))

Conclusion Φ(C) vclk Φ(A) on XIO

Fig. 2 Rule CLKREF

The rule CLKREF indicates that for any interpretation Î over X̂A ∪ X̂C such that
the mapping of variables α (as a relation) is evaluated to true and Î is a clock
configuration of Φ(C), then it is also a clock configuration of Φ(A). Then there exists a

14 Ngo, Talpin, Gautier, Besnard, and Le Guernic

clock refinement for (Φ(C), Φ(A)). The rule CLKREF is sound based on the following
theorem.

Theorem 1 For a mapping of variables X̂A \ X̂IO = α(X̂C \ X̂IO), if the formula
Φ(C)⇒ Φ(A) is valid, then Φ(C) vclk Φ(A) on XIO.

Proof To prove it, we have to show that for every interpretation Î over X̂ = X̂A ∪ X̂C

such that α is evaluated to true, if Î |= (Φ(C) ⇒ Φ(A)), then Γ(Φ(C))\XIO ⊆

Γ(Φ(A))\XIO . Given XIO.Tc ∈ Γ(Φ(C))\XIO , it means that ∀t,Tc(t) ∈ S EcX (Φ(C)). Since
for every interpretation Î, Î |= Φ(C) implies that Î |= Φ(A)), thus S EcX (Φ(C)) ⊆
S EcX (Φ(A)) under the variable mapping. We get Tc(t) ∈ S EcX (Φ(A)) for every t. There-
fore, we have Tc ∈ Γ(Φ(A)). ut

Mapping of variables. Consider a variable x ∈ X̂A \ X̂IO, the mapping αx defines the
value of x in the clock model Φ(A) α-related to the value represented in the clock
modelΦ(C). We need to describe the mappings αx for xc ∈ X̂C \ X̂IO = Mclk∪Rclk∪Lclk

(memorization, register and local variables). Recall that for every register signal s,
we introduce memorization variables m.s, m.s′ in the clock model Φ(A), and the
corresponding memorization variables m.sc, m.s′c in the clock model Φ(C). Therefore,
we define the following instance of the α mapping for each register signal s: s̃ = s̃c ⇒

m.s = m.sc ∧ m.s′ = m.s′c.
For example, in the program DEC, the mapping for the variables m.N, m.N′, m.Nc

and m.N′c will be given by the formula: Ñ = Ñc ⇒ m.N = m.Nc ∧ m.N′ = m.N′c.
It remains to define the instance of the mapping α for variables l̂, l̃ ∈ Rclk ∪ Lclk

in the clock model Φ(A) which correspond to register or local signals named l in the
program. In a deterministic Signal program, a signal l is defined by an equation l := eq,
and if we follow the definitions of all output and local signals in this equation and
apply successive substitutions, then we get that the equation is constructed only from
the input and register signals. Note that the compiler will detect non-deterministic
programs, for which this property is not respected. Equivalently, in the corresponding
clock model Φ(A), the output, register and local variables are determinately defined
from the input I and memorization M variables. The definition is written in the clock
model in the form l̂⇔ f̂ ∧ (l̂⇒ l̃ = f̃) or l̂⇔ f̂ ∧ (l̂⇒ l̃ = f̃) ∧ f̃0, where f̂ , f̃ and f̃0
are the formulas which define respectively the clock, the value, and the initial value
of the signal l in the clock model Φ(A). Therefore, we define the following instance
of the α mapping in the clock model, corresponding to each register or local signal l:
l̂⇔ f̂ ∧ (l̂⇒ l̃ = f̃) or l̂⇔ f̂ ∧ (l̂⇒ l̃ = f̃) ∧ f̃0.

For example, in the program DEC, the mapping for the variables ẐN and Z̃N in
the clock model Φ(DEC) corresponding to the local variable ZN will be given by the
formula: (ẐN ⇔ N̂) ∧ (ẐN ⇒ (Z̃N = m.N ∧ m.N′ = Ñ)) ∧ (m.N0 = 1).

Thus, the mapping of variables X̂A\X̂IO = α(X̂C \X̂IO) is expressed as the following
formula:∧

m.s∈M(s̃ = s̃c ⇒ (m.s = m.sc ∧ m.s′ = m.s′c)) ∧
∧

l̂,̃l∈R∪L(l̂⇔ f̂ ∧ (l̂⇒ l̃ = f̃)) or∧
m.s∈M(s̃ = s̃c ⇒ (m.s = m.sc ∧ m.s′ = m.s′c)) ∧

∧
l̂,̃l∈R∪L(l̂⇔ f̂ ∧ (l̂⇒ l̃ = f̃) ∧ f̃0)

Modular Translation Validation of a Synchronous Compiler 15

SMT solving. To solve the validity of the formula (Φ(C) ⇒ Φ(A)) in Theorem 1
under the mapping of variables, a SMT solver is needed since this formula involves
non-Boolean variables and uninterpreted functions (using a SAT solver would not
be sufficient). A SMT solver decides the satisfiability of arbitrary logic formulas of
linear real and integer arithmetic, scalar types, other user-defined data structures, and
uninterpreted functions. If the formula belongs to the decidable theory, the solver gives
two types of answers: sat when the formula has a model (there exists an interpretation
that satisfies it); or unsat, otherwise. In our case, we will ask the solver to check
whether the formula ¬(Φ(C) ∧ X̂A \ X̂IO = α(X̂C \ X̂IO) ⇒ Φ(A)) is unsatisfiable,
since this formula is unsatisfiable iff |= (Φ(C) ∧ X̂A \ X̂IO = α(X̂C \ X̂IO)⇒ Φ(A)). In
our translation validation, the clock models which are constructed from Boolean or
numerical variables and uninterpreted functions belong to a part of first-order logic
which has a small model property according to [14]. The numerical variables are
involved only in some implications with uninterpreted functions such as (x̃ = x̃′ ∧ ỹ =

ỹ′)⇒ ṽi
� = ṽ j

�. In addition, the formula is quantifier-free. This means that the check
of satisfiability can be established by examining a certain finite cardinality of models.
Therefore, the formula can be solved efficiently and this significantly improves the
scalability of the solver.

The flow and main components of the validator are depicted in Fig. 3. First, it takes

Signal Program
A

Clock Model
Construction

�(A)

Clock Model
Construction

�(C)

Yices Solver

Signal Program
C

Checking Formula
Construction

Fig. 3 Clock model translation validation

the input program P and its transformed counterpart P_BASIC_TRA (refer to Fig. 1),
and constructs the corresponding clock models. Indicatively, the transformed program
DEC_BASIC_TRA obtained from the source program DEC as result of the first phase of
the Signal compiler is illustrated in Listing 3. Its clock model is twice as large as that
of the program DEC (Section 4.1.1).

1 (| CLK := CLK_N -̂ CLK_FB |)
2 | (| CLK_N := CLK_N +̂ CLK_FB
3 | CLK_N =̂ N =̂ ZN
4 |)
5 | (| CLK_FB := when (ZN<=1)
6 | CLK_FB =̂ FB
7 | CLK_12 := when (not (ZN<=1))
8 |)
9 | (| N := (FB when CLK_FB) default ((ZN-1) when CLK)

10 | ZN := N$1 init 1
11 |)
12 |)

Listing 3 DEC_BASIC_TRA in Signal

16 Ngo, Talpin, Gautier, Besnard, and Le Guernic

These clock models are combined as the formula (Φ(P_BASIC_TRA)⇒ Φ(P)). In the
solving phase, it checks the validity of the formula Φ(P_BASIC_TRA) ⇒ Φ(P). The
result of this check can be exploited for the preservation of clock semantics of the
transformations. If the formula is not valid then it emits a compiler bug. Otherwise,
the compiler continues its work. The same procedure is applied for the next steps
of the compiler. Finally, our verification process asserts that Φ(P_BOOL_TRA) vclk

Φ(P_BASIC_TRA) vclk Φ(P) along the transformations of the compiler. We delegate
the checking of the clock refinement to a SMT solver. For our experiments, we consider
the Yices [19] solver, which is one of the best solvers at the SMT-Comp competition
[57].

5 Preservation of Data Dependencies

This section focuses on constructing a validator that proves the preservation of data
dependencies in the scheduling synthesis phase of the Signal compiler. It describes how
the preservation of data dependencies among signals can be proved by showing that for
every pair of signals x and y in the source program, if there exists a data dependency
between x and y, then this dependency also exists in the compiled program. Data
dependencies among signals are represented by a Synchronous Data-flow Dependency
Graph (SDDG). Given two SDDGs of the source and compiled programs, a refinement
relation between them is formally defined, which expresses the semantic preservation
of data dependencies. Here again, we delegate checking the refinement to a SMT
solver.

5.1 Synchronous Data-flow Dependency Graph

Consider the basic process y := x default z with its clock relations among signals;
the “valid” statuses of the signals are: x is present and y is present; or x is absent,
z is present, and y is present; or x, y and z are absent. They can be represented by
ŷ⇔ (x̂ ∨ ẑ) in our clock abstraction. Following these statuses, the data dependencies
among signals in this process are depicted in Fig. 4, where labels on edges represent
the conditions at which the corresponding dependencies are effective. For instance,
when x̂ = true, y is defined by x; otherwise it is defined by z when x̂ = false and
ẑ = true. We can see that the graph in this figure has the following property: an edge
cannot exist if one of its extremity nodes is not present (or the corresponding signal
holds no value). In our example, this property can be expressed in the abstraction as:
x̂⇒ ŷ ∧ x̂;¬x̂ ∧ ẑ⇒ ŷ ∧ ẑ.

yx zx̂ ¬x̂ ∧ ẑ

Fig. 4 The SDDG of the merge operator

Modular Translation Validation of a Synchronous Compiler 17

An SDDG associated with a program is a labeled directed graph [49] in which
nodes are signal and clock variables and edges represent dependencies between nodes.
Edges are labeled by clocks (represented by first-order logic formulas). An edge clock
tells when the dependency is effective: when the clock is present. Formally, an SDDG
is defined as follows:

Definition 4 (SDDG) An SDDG is a labeled directed graph G = 〈N, E, I,O,C,mN ,mE〉,
where:

– N is a finite set of nodes, each of which represents the equation defining a signal
or a clock;

– E ⊆ N × N is the set of dependencies between nodes;
– I ⊆ N is the set of input nodes;
– O ⊆ N is the set of output nodes;
– C is the set of first-order logic formulas, called clock constraints; the clock con-

straints are encoded using the abstraction described in Section 4.1;
– mN : N −→ C is a mapping labeling each node with a clock; it defines the existence

condition of a node;
– mE : E −→ C is a mapping labeling each edge with a clock constraint; it defines

the existence condition of an edge.

The clock labeling in an SDDG provides a dynamic dependency feature. This clock
labeling enforces the following property: an edge exists only if its two extremity
nodes exist. This can be translated in our abstraction as: ∀(x, y) ∈ E,mE(x, y) ⇒
(mN(x) ∧ mN(y)). A dependency between two nodes (signals or clocks) x and y at a

clock condition mE(x, y) = ĉ is denoted by x
ĉ
−→ y. A dependency path from x to y is

any set of nodes s = {x0, x1, . . . , xk} such that x = x0
ĉ0
−→ x1

ĉ1
−→ . . .

ĉk−1
−−−→ xk = y.

In Table 1, we indicate the dependencies among signals for the core language (the
subclocks [c] and [¬c] are encoded as ĉ∧ c̃ and ĉ∧¬c̃, respectively, in our abstraction).
The edges are labeled by clocks, which are represented by a first-order formula. The
last line of the table expresses added dependencies for any dependency x

c
−→ y. The

dependencies in this table respect in particular the mentioned implicit property of an
SDDG: for instance, the encoding of the primitive operator sampling satisfies that
ŷ⇒ x̂ ∧ ŷ and ŷ⇒ b̂ ∧ ŷ.

Following the above construction rules, we can obtain the SDDG in Fig. 5 for the
program DEC, where we introduce two fresh variables ZN1 and ZN2 to replace the
expressions ZN <= 1 and ZN − 1, respectively. Note that for more clarity we omit
some dependencies (for example, the signal N depends on its clock N̂). The clocks
which label the edges in the graph are encoded as the first-order formulas given as
follows:

ẐN1 = ẐN2 = ẐN = N̂
F̂B = ẐN1 ∧ Z̃N1
N̂ = F̂B ∨ ẐN2

18 Ngo, Talpin, Gautier, Besnard, and Le Guernic

Operators Encoding in SDDG

x x̂
x̂
−→ x, mN (x̂) = x̂, mN (x) = x̂

c (Boolean signal) c
[c]
−−→ [c], mN (c) = ĉ, mN ([c]) = [c], c

[¬c]
−−−→ [¬c], mN (c) = ĉ,

mN ([¬c]) = [¬c]

y := f (x1, . . . , xn) x1
ŷ
−→ y, . . . , xn

ŷ
−→ y, mN (xi) = x̂i, mN (y) = ŷ, i = 1, . . . , n

y := x$1 init a mN (x) = x̂,mN (y) = ŷ

y := x when b x
ŷ
−→ y, mN (x) = x̂,mN (y) = ŷ, b

ŷ
−→ ŷ, mN (b) = b̂, mN (ŷ) = ŷ

y := x default z x
x̂
−→ y, mN (x) = x̂, mN (y) = ŷ, z

ẑ∧¬x̂
−−−−→ y, mN (z) = ẑ, mN (y) = ŷ

x
c
−→ y [c]

[c]
−−→ y, mN ([c]) = [c], mN (y) = ŷ

Table 1 The dependencies of the core language

F̂B

FB

N

ẐN1

ZN

ZN1

ZN2

F̂B

¬F̂B ∧ ẐN2

F̂B

ẐN

ẐN1

ẐN2

ẐN2ẐN1

F̂B

F̂B

Fig. 5 The SDDG of DEC

5.2 Translation validation of SDDG

We adopt the translation validation approach to prove the correctness of the compiler in
the scheduling synthesis phase of the compilation process. Given two SDDGs, we first
formalize the notion of “correct implementation” as a dependency refinement relation.
This refinement expresses the semantic preservation of data dependencies. Then, as
for clock models, we propose a method to implement our verification framework by
the use of a SMT solver for checking the existence of the above refinement relation.

5.2.1 Definition of correct implementation: Dependency refinement

Let SDDG(A) = 〈NA, EA, IA,OA,CA,mNA ,mEA〉 be the SDDG of the source program
and SDDG(C) = 〈NC , EC , IC ,OC ,CC ,mNC ,mEC 〉 the SDDG of its transformed counter-
part produced by the Signal compiler. Let x and y be two signals in both programs A

Modular Translation Validation of a Synchronous Compiler 19

and C. A dependency path from the signal x to the signal y in SDDG(C) is a reinforce-
ment of the dependency path from x to y in SDDG(A) if the following condition holds:
at any instant t, if the dependency path in SDDG(A) is effective (meaning that the
conjunction of all the conditions associated with the path is evaluated to be true at
t), then the corresponding dependency path in SDDG(C) is also effective. The formal
definition of reinforcement is given as follows.

Definition 5 (Reinforcement) Let dp1 = 〈x0, x1, . . . , xn〉 and dp2 = 〈x′0, x
′
1, . . . , x

′
m〉

be two dependency paths in SDDG(A) and SDDG(C), respectively, where x = x0 = x′0,
y = xn = x′m and ĉi, ĉ′j denote the clock constraints mEA (xi, xi+1) and mEC (x′j, x

′
j+1). It

is said that dp2 is a reinforcement of dp1 iff the following formula is valid:

|=

n−1∧
i=0

ĉi ⇒

m−1∧
j=0

ĉ′j

We write dp2 �dep dp1 to denote the fact that dp2 is a reinforcement of dp1. The
assertion |=

∧n−1
i=0 ĉi ⇒

∧m−1
j=0 ĉ′j indicates that if, at any instant, the dependency path

dp1 in SDDG(A) is effective, then the dependency path dp2 in SDDG(C) is also

effective. In the special case when m = n = 1, x
ĉ′0
−→ y is a reinforcement of x

ĉ0
−→ y iff

|= ĉ0 ⇒ ĉ′0.
Consider a dependency path from x to y in an SDDG graph. Assume that there

exists a path from y to x, that makes a dependency cycle between x and y. We say that
such a cycle is a deadlock iff the dependencies of x to y and vice-versa are effective at
the same time. The formal definition of deadlock is given as follows.

Definition 6 (Deadlock) Let dp = 〈x0, x1, . . . , xn, x0〉 be a cycle in an SDDG graph.
The dependency cycle dp stands for a deadlock if the conjunction of all the clock
constraints associated with the cycle is satisfiable, meaning that there exists some
interpretation that makes the conjunction formula mE(x0, x1) ∧ mE(x1, x2) ∧ . . . ∧
mE(xn, x0) true.

Obviously, a dependency cycle does not stand for a deadlock if the conjunction of all
the clock constraints associated with the cycle, in which the dependencies are effective,
is identically false: that means that the dependencies of the cycle cannot be present
at the same time. It can be expressed as:

M 6|=
n∧

i=0

ĉi,

where the ĉi are the clock constraints associated with the dependencies of the cycle.
It indicates that there is no interpretation that makes the conjunction of all the clock
constraints associated with the cycle true. Based on the above definition of deadlock,
an SDDG is deadlock-free if every dependency cycle in the graph does not stand for a
deadlock.

20 Ngo, Talpin, Gautier, Besnard, and Le Guernic

Definition 7 (Deadlock-consistency) Let dp1 and dp2 be two dependency paths from
the signal x to the signal y in SDDG(A) and SDDG(C), respectively. The dependency
path dp2 is deadlock-consistent with dp1 if the following condition is satisfied: if there
is no dependency cycle between x and y in SDDG(A) which is a deadlock, then all
dependency cycles between x and y in SDDG(C) are not deadlocks.

Let dp1 = 〈x0, x1, . . . , xn〉 and dp2 = 〈x′0, x
′
1, . . . , x

′
m〉 be two dependency paths in

SDDG(A) and SDDG(C), respectively, where x = x0 = x′0, y = xn = x′m and ĉi, ĉ′j
denote the clock constraints mE(xi, xi+1) and mE(x′j, x

′
j+1). The Definition 7 can be

expressed as follows. For any dependency path dpinv
1 = 〈xinv

0 , xinv
1 , . . . , xinv

p 〉, where
xinv

0 = y, xinv
p = x, that forms a cycle between x and y in SDDG(A), then for every

dependency path dpinv
2 = 〈xinv′

0 , xinv′
1 , . . . , xinv′

q 〉, where xinv′
0 = y, xinv′

q = x, that forms a
cycle between x and y in SDDG(C), it satisfies:

|= (
n−1∧
i=0

ĉi ∧

p−1∧
j=0

ĉinv
j)⇔ false⇒ (

m−1∧
k=0

ĉ′k ∧
q−1∧
l=0

ĉinv′
l)⇔ false

We write dp2 �dep dp1 to denote the fact that dp2 is deadlock-consistent with dp1.
Deadlock-consistency expresses the fact that if there is a cycle between two signals x
and y in the graph of the source program such that it does not stand for a deadlock, then
in the graph of the compiled program, every cycle between x and y must not stand for a

deadlock. In the special case where m = n = p = q = 1, x
ĉ′0
−→ y is deadlock-consistent

with x
ĉ0
−→ y if |= (c0 ∧ cinv

0 ⇔ false)⇒ (c′0 ∧ cinv′
0 ⇔ false).

Recall that SDDG(A) and SDDG(C) are two Synchronous Data-flow Dependency
Graphs, to which we refer respectively as the data dependency representations of the
source program and its transformed counterpart produced by the Signal compiler. We
assume that they have the same set of nodes, NA = NC . Let x and y be two signals,
we say that C preserves the data dependencies among signals in A if the following
conditions are satisfied:

– For every dependency path from the signal x to the signal y in A, there exists a
dependency path from x to y in C.

– If there is no deadlock in A, then C introduces no deadlock. In other words, if A is
deadlock-free, then it is required that C is deadlock-free.

These conditions can be expressed in terms of the Synchronous Data-flow Dependency
Graphs as follows:

– For every dependency path from the signal x to the signal y in SDDG(A) at a clock
constraint ĉ1, then there exists a dependency path from x to y at a clock constraint
ĉ2 in SDDG(C) such that the dependency path in SDDG(C) is effective whenever
the dependency path in SDDG(A) is effective.

– If SDDG(A) is deadlock-free, then SDDG(C) is also deadlock-free.

If the SDDGs satisfy the above conditions, we say that SDDG(C) is a dependency
refinement of SDDG(A) on NA and C is a correct implementation of A. We write
S DDG(C) vdep S DDG(A) to denote the fact that there exists a dependency refinement

Modular Translation Validation of a Synchronous Compiler 21

relation between SDDG(C) and SDDG(A). We formalize the definition of dependency
refinement as follows.

Definition 8 (Dependency refinement) Let SDDG(A) and SDDG(C) be two Syn-
chronous Data-flow Dependency Graphs, SDDG(C) is a dependency refinement of
SDDG(A) if:

1. for every dependency path dp1 = 〈x0, x1, . . . , xn〉 in SDDG(A), there exists a
dependency path dp2 = 〈x′0, x1, . . . , x′m〉 in SDDG(C) such that dp2 �dep dp1;

2. for any two dependency paths dp1 = 〈x0, x1, . . . , xn〉 in SDDG(A) and dp2 =

〈x′0, x
′
1, . . . , x

′
m〉 in SDDG(C) such that x0 = x′0 and xn = x′m, then dp2 �dep dp1.

Based on the definitions of reinforcement, deadlock-consistency and dependency
refinement relations, important properties are stated in Proposition 2.

Proposition 2 The reinforcement, deadlock-consistency and dependency refinement
are reflexive and transitive:

1. ∀dp, dp �dep dp
2. ∀dp, dp �dep dp
3. ∀SDDG(P), SDDG(P) vdep SDDG(P)
4. If dp1 �dep dp2 and dp2 �dep dp3 then dp1 �dep dp3
5. If dp1 �dep dp2 and dp2 �dep dp3 then dp1 �dep dp3
6. If SDDG(P1) vdep SDDG(P2) and SDDG(P2) vdep SDDG(P3) then SDDG(P1) vdep

SDDG(P3)

Proof The proof is based on the definitions of reinforcement, deadlock-consistency
and dependency refinement.
Reinforcement: For every dependency path dp, we always have dp �dep dp.
Assume that dp1 �dep dp2 and dp2 �dep dp3, we have (|=

∧n−1
i=0 ĉi ⇒

∧m−1
j=0 ĉ′j) and

(|=
∧m−1

j=0 ĉ′j ⇒
∧p−1

k=0 ĉ′′k). Thus, (|=
∧n−1

i=0 ĉi ⇒
∧p−1

k=0 ĉ′′k), or dp1 �dep dp3.
Deadlock-consistency: For every dependency path dp, we always have dp �dep dp.
Because dp1 �dep dp2 and dp2 �dep dp3, we have |= (

∧n−1
i=0 ĉi ∧

∧p−1
j=0 l̂ j)⇔ false⇒

(
∧m−1

u=0 ĉ′u ∧
∧q−1

v=0 l̂′u) ⇔ false and |= (
∧m−1

u=0 ĉ′u ∧
∧q−1

v=0 l̂′u) ⇔ false) ⇒ (
∧r−1

t=0 ĉ′′t ∧∧s−1
z=0 l̂′′z) ⇔ false. Therefore, |= (

∧n−1
i=0 ĉi ∧

∧p−1
j=0 l̂ j) ⇔ false ⇒ (

∧r−1
t=0 ĉ′′t ∧∧s−1

z=0 l̂′′z)⇔ false, or dp1 �dep dp3.
Dependency refinement: For every dependency path dp ∈ SDDG(P), we have dp �dep

dp and dp �dep dp, thus SDDG(P) vdep SDDG(P).
For every dependency path dp3 ∈ SDDG(P3), there exists a dependency path dp2 ∈

SDDG(P2) such that dp2 �dep dp3. Then, there exists a dependency path dp1 ∈

SDDG(P1) such that dp1 �dep dp2. Following the transitivity of the reinforcement, we
have dp1 �dep dp3. In the same way, for every dependency path dp3 ∈ SDDG(P3), any
dependency path dp1 ∈ SDDG(P1) satisfies dp1 �dep dp3. Therefore, SDDG(P1) vdep

SDDG(P3). ut

22 Ngo, Talpin, Gautier, Besnard, and Le Guernic

5.2.2 Adaptation to the Signal compiler

Again, we have to adapt the above definition of dependency refinement to the case
of the Signal compiler. Relying on the same considerations we made previously in
Section 4.2.2 about clocks, we note that in our context, the natural observation from
the outside is the snapshot of the dependencies among the input and output signals.
For example, for the program DEC, the observation is the dependencies between the
signals (FB,N) at a given instant. And it is natural to choose also the observation for
the transformed program as the snapshot of the dependencies among the input and
output signals.

This makes us adapt the definition of clock refinement as follows. Let SDDG(A)
and SDDG(C) be two Synchronous Data-flow Dependency Graphs such that they have
same set of input and output nodes, IA = IC and OA = OC . We say that C is a correct
implementation of A if at any instant, the dependencies among the signals in IA ∪ OA

are also the dependencies among the signals in IC ∪ OC . Formally, S DDG(C) vdep

S DDG(A) on IA ∪ OA.

5.2.3 Proving Dependency Refinement by SMT

We propose a method to check the existence of a refinement between two SDDGs
ùin Definition 8 using a SMT solver [19,57]. Let SDDG(A) and SDDG(C) be the
Synchronous Data-flow Dependency Graphs of given source and compiled programs.
The set of all common input and output signals between A and C is represented by
the common set of input and output nodes in the graphs, IA ∪ OA. For all signals or
clock variables in SDDG(C) except the common input and output signals, we add
“c” as superscript to distinguish them from the signals in SDDG(A). The mapping of
variables that maps the non input/output signals from SDDG(A) to the non input/output
signals in SDDG(C) is constructed as described in Section 4.2.3. Our aim is proving
that SDDG(C) refines SDDG(A) on IA ∪ OA.

To check the existence of the dependency refinement, we apply graph traversals of
SDDG(A) and SDDG(C) to verify the following conditions:

– for every path dp1 from x to y such that x, y ∈ IA ∪ OA in SDDG(A), there exists a
reinforcement dp2 from x to y in SDDG(C);

– for every path dp1 from x to y such that x, y ∈ IA ∪ OA in SDDG(A), any path dp2
from x to y in SDDG(C) is deadlock-consistent with the path dp1.

Consider two dependency paths dp1 = 〈x0, x1, . . . , xn〉 and dp2 = 〈x′0, x
′
1, . . . , x

′
m〉 in

SDDG(A) and SDDG(C), respectively, where ĉi and ĉ′j denote the clock constraints
mE(xi, xi+1) and mE(x′j, x

′
j+1). From Definition 5, dp2 is a reinforcement of dp1 iff the

following formula is valid:

n−1∧
i=0

ĉi ⇒

m−1∧
j=0

ĉ′j (1)

Modular Translation Validation of a Synchronous Compiler 23

In the same way, to verify deadlock-consistency between dp1 and dp2, we have to
check the validity of the following formula:

(
n−1∧
i=0

ĉi ∧

p−1∧
j=0

ĉinv
j)⇔ false⇒ (

m−1∧
k=0

ĉ′k ∧
q−1∧
l=0

ĉinv′
l)⇔ false (2)

To solve the validity of the above formulas under the mapping of variables, a SMT
solver is needed since these formulas involve non-Boolean variables and uninterpreted
functions as in our abstraction of clock semantics. In our case, we shall ask the solver
to check whether the formula ¬(1) is unsatisfiable, since this formula is unsatisfiable
iff |= (1). We do the same for the formula (2), meaning that we ask the solver to check
whether the formula ¬(2) is unsatisfiable.

As for clock semantics, satisfiability can be established by examining a certain
finite cardinality of models, and it can be solved efficiently [2,9]. Notice that we do
not provide here any specific algorithm to find cycles in a directed graph; interested
readers can refer to any research on this problem (e.g. the work of D.B. Johnson [32]).

Signal
Program SDDG Construction

SDDG Construction

Checking Formula
Construction

Transformed
Signal

Program

Yices Solver

Fig. 6 SDDG translation validation

The main components of the validator are depicted in Fig. 6. It works as follows.
First, it takes the input program A and the counterpart transformed program C. It
constructs the corresponding Synchronous Data-flow Dependency Graphs. Then, it
establishes the first-order logic formulas corresponding to formula (1) and formula
(2), and the mapping of variables from the transformed program to the input program.
Finally, in the solving phase, it checks the validity of the formulas in the previous
step to indicate the dependency refinement. As illustration, the SDDG of the program
DEC_SEQ_TRA resulting from the scheduling synthesis phase of the Signal compiler
applied to the program DEC is depicted in Fig. 7 (FB1 and ZN3 are fresh variables, FB1
replaces FB when C_FB). Considering the SDDGs of DEC (obtained after the clock
synthesis phase) and of DEC_SEQ_TRA, checking the dependency refinement amounts
to finding all dependency paths from FB to N to generate the formulas (1) and (2). In
this case:

F̂B⇒ (F̂B1c ∧ F̂B1c)

24 Ngo, Talpin, Gautier, Besnard, and Le Guernic

102 Translation validation of SDDG

6 | C_CLK_12 := not (ZN <= 1)
7 |)
8 |)

In the first step, we shall construct the synchronous data-flow dependency graphs which
are depicted in Figure 5.5 and Figure 5.7. Two fresh variables FB1 and ZN3 are used
to replace the expressions FB when C_FB and ZN2 when C_CLK_12. We omit the de-
pendencies among the signals FB, cFB,C_FBc and \C_FBc in the graph of the program
DEC_SEQ_TRA.

FB

FB1c

N

[FB1c

ZN3c

C_FBc

ZN1c

[ZN3c

ZN2c

ZNc

C_CLK_12c

[FB1c

¬[FB1c ^ [ZN3c

[FB1c [FB1c

[FB1c

\C_FBc [ZN1c

[ZN3c

[ZN2c

[ZN3c

[ZN3c

\C_CLK_12c

Fig. 5.7 The SDDG of DEC_SEQ_TRA

In the second step, checking formula construction, our tool will establish the variable
mapping dXDEC \dXIO = a(\XDEC_BASIC_TRA \dXIO) as in Section 4.4.5.1. Next, it finds all depen-
dency paths from the signal FB to the signal N, and the cycles in the graphs SDDG(DEC) and
SDDG(DEC_SEQ_TRA) to generate the formulas for checking the dependency refinement. In
this example, we get the following formula:

cFB) ([FB1c ^ [FB1c)

In the third step, we delegate the checking validity of the formula to YICES solver. We
get unsat when checking the satisfiability of ¬(cFB) ([FB1c ^ [FB1c)), which means the
formula is valid. Therefore, we can conclude that SDDG(DEC_SEQ_TRA) vdep SDDG(DEC)

Fig. 7 The SDDG of DEC_SEQ_TRA

6 Value-equivalence of Variables

Following clock and dependency validation, the next step focuses on proving that every
output signal in the source program and the corresponding variable in the generated
C program are assigned the same values at all times. Still in a translation validation
approach, we use a value-graph as common semantics to represent the computation
of variables in the source and compiled programs. The “correct transformation” is
defined by the assertion that every output variable in the source program and the
corresponding variable in the compiled program have the same values. Let Cdep and
C be the intermediate forms of the source program A as the results of the scheduling
synthesis phase and the C code generation, respectively. Cpsig denotes the unverified
Signal compiler, which compiles Cdep into either C = Cpsig(A) or a compilation error.
We now associate Cp with a validator, checking that at any time, for any output signal
x in Cdep and the corresponding variable xc in C, they have the same values (denoted
by x̃ = x̃c). We denote this property by C vval Cdep.

The main components of the validator are depicted in Fig. 8. First, a shared value-
graph that represents the computation of all signals and variables in both programs
is constructed. The value-graph can be considered as a generalization of symbolic
evaluation. Then, the shared value-graph is transformed by applying graph rewrite
rules (normalization). The set of rewrite rules reflects the general rules of inference of
the operators and the optimizations of the compiler. For instance, consider the 3-node
subgraph representing the expression (1 > 0): the normalization will transform that
graph into a single node subgraph representing the value true (it reflects the constant
folding). Finally, the validator compares the values of the output signals and the
corresponding variables in the C code. For every output signal and its corresponding
variable, the validator checks whether they point to the same node in the graph,
meaning that their computation is represented by the same subgraph. In the best case,

Modular Translation Validation of a Synchronous Compiler 25

when semantics has been preserved, this check has constant time complexity O(1). In
fact, it is expected that, if there is no compiler bug, transformations and optimizations
are semantics-preserving.

Signal
Program

SDVG
Construction

SDVG
Construction

Shared
Value-graph

Generated
C Program

Normalized
Value-graph

Does every output signal have
the same value as the

corresponding variable in the
generated C code?

Fig. 8 SDVG translation validation

6.1 Synchronous Data-flow Value-Graph

Let X be the set of variables used to denote the signals, clocks and variables in a Signal
program and its generated C code, and F the set of function symbols. Here, F contains
usual logic operators (not, and, or), numerical comparison functions (<, >, =, <=, >=,
/=), numerical operators (+, -, *, /), and gated φ-function [48]. A gated φ-function
such as x = φ(c, x1, x2) represents a branching in a program, which means x takes the
value of x1 if the condition c is satisfied, and the value of x2 otherwise. A constant is
defined as a function symbol of arity 0.

Definition 9 A SDVG (Synchronous Data-flow Value-Graph) associated with a Signal
program and its generated C code is a directed graph G = 〈N, E, lN ,mN〉, where N is a
finite set of nodes that represent clocks, signals, variables, or functions; E ⊆ N × N
is the set of edges that describe the computation relations between nodes; lN : N −→
X ∪ F is a mapping labeling each node with an element in X ∪ F; mN : N −→ P(N) is
a mapping labeling each node with a finite set of clocks, signals, and variables. The
mapping mN defines a set of equivalent clocks, signals and variables.

A subgraph rooted at a given node is used to describe the computation of the corre-
sponding element labeled (with lN) at this node. A node s labeled by y with the set of
clocks, signals or variables mN(s) = {x0, . . . , xn} will be denoted as a node with label
{x0, . . . , xn} y.

6.1.1 SDVG of a Signal Program

Let P be a Signal program, we write X = {x1, . . . , xn} to denote the set of all signals in
P, consisting of input, output, state (corresponding to delay operator) and local signals,
denoted by I,O, S and L, respectively. Recall that for each xi ∈ X, Dxi denotes its
domain of values and D⊥xi

its domain of values extended with the absent value. Each
signal xi is associated with a Boolean variable x̂i to encode its clock at a given instant

26 Ngo, Talpin, Gautier, Besnard, and Le Guernic

t and x̃i with the same type as xi to encode its value. Formally, the abstract values
representing the clock and value of a signal can be denoted using a gated φ-function:
xi = φ(x̂i, x̃i,⊥).

Assume that the computations of signals in processes P1 and P2 are represented
as shared value-graphs G1 and G2, respectively. Then the value-graph G of the syn-
chronous composition process P1|P2 can be defined as G = 〈N, E, lN ,mN〉 obtained
from G1 and G2 by replacing any node labeled by some x by the subgraph that is
rooted by the node labeled by x in G1 or G2. Every identical subgraph is reused, in
other words, we maximize sharing among graph nodes in G1 and G2. Thus, the shared
value-graph of P can be constructed as a combination of the sub-value-graphs of its
equations.

Thus the SDVG of a Signal program is obtained from the subgraphs associated
with each primitive operator.
Stepwise Functions y := f (x1, . . . , xn). The computation of y can be represented
by the following gated φ-function: y = φ(ŷ, f (x̃1, x̃2, . . . , x̃n),⊥), where ŷ ⇔ x̂1 ⇔

x̂2 ⇔ . . . ⇔ x̂n. The graph representation of the stepwise functions is depicted in
Fig. 9 (left). Note that in the graph, the node labeled by {x̂1, . . . , x̂n} ŷ means that
mN(ŷ) = {x̂1, . . . , x̂n}. In other words, the subgraph representing the computation of ŷ
is also the computation of x̂1, . . . , and x̂n.

{x̂1, ..., x̂n} ŷ

φ

⊥

{̃y} f

x̃1

φ

x̃2

φ

... x̃n

φ

{x̂} ŷ

φ

⊥

{̃y} m̃.x

{m̃.x0} a

Fig. 9 The graphs of y := f (x1, . . . , xn) and y := x$1 init a

Delay y := x$1 init a. The computation of y can be represented by the following
nodes: y = φ(ŷ, m̃.x,⊥) and m̃.x0 = a, where ŷ⇔ x̂; m̃.x and m̃.x0 are respectively the
last value of x and the initial value of y. The graph representation is depicted in Fig. 9
(right).
Sampling y := x when b. The computation of y can be represented by the follow-
ing node: y = φ(ŷ, x̃,⊥), where ŷ ⇔ (x̂ ∧ b̂ ∧ b̃). Fig. 10 (right) shows its graph
representation.
Merge y := x default z. The computation of y can be represented by the following
node: y = φ(ŷ, φ(x̂, x̃, z̃),⊥), where ŷ⇔ (x̂ ∨ ẑ). The graph representation is depicted
in Fig. 10 (left). Note that in the graph, the clock ŷ is represented by the subgraph of
x̂ ∨ ẑ.

Modular Translation Validation of a Synchronous Compiler 27

{ŷ} ∨

φ

⊥

{̃y} φx̂ ẑ

x̃

φ

z̃

φ

{ŷ} ∧

φ

⊥

{̃y} x̃φx̂ ∧

b̂ b̃

φ

Fig. 10 The graphs of y := x default z and y := x when b

Restriction. The graph representation of the restriction process P where x is the same
as the graph of P.
Clock Relations. Given the above graph representations of the primitive operators,
we can obtain the graph representations for the derived operators on clocks as the
following gated φ-function z = φ(ẑ, true,⊥), where ẑ is computed as ẑ⇔ x̂ for z := x̂,
ẑ⇔ (x̂∨ ŷ) for z := x ˆ+ y, ẑ⇔ (x̂∧ ŷ) for z := x ˆ∗ y, ẑ⇔ (x̂∧¬ŷ) for z := x ˆ− y,
and ẑ⇔ (b̂∧ b̃) for z := when b. The clock relation x ˆ= y is represented by a single
node graph labeled by {x̂} ŷ.

6.1.2 SDVG of Generated C Code

For constructing the shared value-graph, the generated C code is translated into a
subgraph along with the subgraph of the Signal program. Let A be a Signal program
and C its generated C code, we denote XA = {x1, . . . , xn} the set of all signals in A,
and XC = {xc

1, . . . , x
c
m} the set of all variables in C. We add “c” as superscript for the

variables, to distinguish them from the signals in A. As described in [8,42,25,4], the
generated C code of A consists of the following files:

– A_main.c is the implementation of the main function. It opens the IO communica-
tion channels by calling functions provided in A_io.c, and calls the initialization
function. Then it calls the step function repeatedly in an infinite loop to interact
with the environment.

– A_body.c is the implementation of the initialization function and the step function.
The initialization function is called once to provide initial values to the program
variables. The step function, which contains also the step initialization and final-
ization functions, is responsible for the calculation of the outputs to interact with
the environment. This function, which is called repeatedly in an infinite loop, is
the essential part of the concrete code.

– A_io.c is the implementation of the IO communication functions. The IO func-
tions are called to setup communication channels with the environment.

The scheduling and the computations are done inside the step function. Therefore, it is
natural to construct a graph of this function in order to prove that its variables and the

28 Ngo, Talpin, Gautier, Besnard, and Le Guernic

corresponding signals have the same values. The generated C code in the step function
consists only of assignments and if-then statements. For each signal named x in A,
there is a corresponding Boolean variable named C_x in the step function. Then the
computation of x is implemented by a conditional if-then statement as follows:

1 if (C_x) {
2 computation(x);
3 }

If x is an input signal, then its computation is the read operation, which gets the value
of x from the environment. If x is an output signal, after computing its value, it will
be written to the IO communication channel with the environment. Note that the C
programs use persistent variables (e.g., variables which always have some value) to
implement the Signal program A which uses volatile variables. As a result, there is
a difference in the types of a signal in the Signal program and of the corresponding
variable in the C code. When a signal has the absent value, ⊥, at a given instant, the
corresponding C variable always has a value. This implies that we have to detect these
instants, at which the value of a variable in the C code is not updated. In this case, it
will be assigned the absent value, ⊥. Thus, the computation of a variable xc can fully
be represented by a gated φ-function xc = φ(C_xc, x̃c,⊥), where x̃c denotes the newly
updated value of the variable.

A particular case is that of the computation of signals whose clock is the master
clock, which ticks every time the step function is called. In the generated C code, they
are implemented using the following forms:

1 if (C_x) {
2 computation(x);
3 } else computation(x);
4 // or without if-then
5 computation(x);

This is also the case for some local C variables introduced by the Signal compiler. The
computation of such variables can be represented by a single node graph labeled by
{x̃c} xc. That means that the variable xc is always updated and holds the value x̃c.

Considering the following code segment, we observe that the variable x is involved
in the computation of the variable y before the updating of x.

1 if (C_y) {
2 y = x + 1;
3 }
4 // code segment
5 if (C_x) {
6 x = ...
7 }

In this situation, we refer to the considered value of x as the previous value, denoted
by m.xc. It happens when a delay operator is applied on the signal x in the Signal
program. The computation of y is represented by the following gated φ-function:
yc = φ(C_yc,m.xc + 1,⊥).

6.2 Translation Validation of SDVG

We introduce the set of rewrite rules to transform the shared value-graph resulting
from the previous step. This procedure is called normalizing. At the end of this

Modular Translation Validation of a Synchronous Compiler 29

normalization, for any output signal x and its corresponding variable xc in the generated
C code, we check whether x and xc point to the same node in the resulting graph
(formally, there exists one node n such that x, xc ∈ mN(n)). The normalizing procedure
can be adapted with any future optimization of the compiler by updating the set of
rewrite rules.

Once a shared value-graph is constructed for the Signal program and its generated
C code, if the values of an output signal and its corresponding variable in the C code
are not already equivalent (they do not point the same node in the shared value-graph),
we start to normalize the graph. Given a set of term rewrite rules, the normalizing
process works as described in Listing 4. The normalizing algorithm indicates that we
apply the rewrite rules to each graph node individually. When there are no more rules
that can be applied to the resulting graph, we maximize the shared nodes, reusing the
identical subgraphs. The process terminates when there exists no more sharing or rules
that can be applied.

1 // Input: G: A shared value-graph. R: The set of
2 // rewrite rules. S : The sharing among graph nodes.
3 // Output: The normalized graph.
4 while (∃s ∈ S or ∃r ∈ R that can be applied on G) {
5 while (∃r ∈ R that can be applied on G) {
6 for (n ∈ G)
7 if (r can be applied on n)
8 apply the rewrite rule to n
9 }

10 maximize sharing
11 }
12 return G

Listing 4 The normalizing algorithm

We classify our set of rewrite rules into three basic types: general simplification
rules, optimization-specific rules and synchronous rules. In the following, we shall
present the rewrite rules of these types, and we assume that all nodes in our shared
value-graph are typed. We write a rewrite rule in the form of term rewrite rules, tl → tr,
meaning that the subgraph represented by tl is replaced by the subgraph represented
by tr when the rule is applied. Due to the lack of space, we only present here a part of
the rules.
General Simplification Rules. These rules are related to the general rules of inference
of operators, denoted by the corresponding function symbols in F. When applying
them, we will replace a subgraph rooted at some node by a smaller subgraph. In
consequence of this replacement, we will reduce the number of nodes by eliminating
some unnecessary structures. A first set of rules simplifies numerical and Boolean
comparison expressions. In these rules, the subgraph t represents some structure of
value computing (e.g., the computation of expression b = x , true). These rules
are self-explanatory, for instance, with any structure represented by a subgraph t, the
expression t = t can always be replaced with a single node subgraph labeled by the
value true.

= (t, t) → true
, (t, t) → false

A second set of general simplification rules eliminates unnecessary nodes that represent
the φ-functions. For instance, we consider the following rules (where c is a Boolean

30 Ngo, Talpin, Gautier, Besnard, and Le Guernic

expression):
φ(true, x1, x2) → x1
φ(c, true, false) → c
φ(c, φ(c, x1, x2), x3) → φ(c, x1, x3)

The first rule replaces a φ-function with its left branch if the condition always holds
the value true. The second rule operates on Boolean expressions represented by the
branches. When the branches are Boolean constants and hold different values, the φ-
function can be replaced with the value of the condition c. Consider a φ-function such
that one of its branches is another φ-function: the third rule removes the φ-function in
the branches if the conditions of the φ-functions are the same.
Optimization-specific Rules. Based on the optimizations of the Signal compiler, we
have a number of optimization-specific rules in a way that reflects the effects of specific
optimizations of the compiler. These rules do not always reduce the graph or make it
simpler. One has to know specific optimizations of the compiler when she wants to
add them to the set of rewrite rules. There is for example a set of rules for simplifying
constant expressions such as:

+(cst1, cst2) → cst, where cst = cst1 + cst2
∧(cst1, cst2) → cst, where cst = cst1 ∧ cst2
�(cst1, cst2) → cst

where � denotes a numerical comparison function, and the Boolean value cst is the
evaluation of the constant expression �(cst1, cst2) which can hold either the value
false or true.

We also may add a number of rewrite rules that are derived from the rules of
inference for propositional logic. For example, we have a group of laws for rewriting
formulas with and operator, such as:

∧(x, true) → x
∧(x,⇒ (x, y)) → x ∧ y

Synchronous Rules. In addition to the general and optimization-specific rules, we
also have a number of rewrite rules that are derived from the semantics of the code
generation mechanism of the Signal compiler.

A first rule is that if a variable in the generated C code is always updated, then we
require that the corresponding signal in the source program is present at every instant,
meaning that the signal never holds the absent value. In consequence of this rewrite
rule, the signal x and its value when it is present x̃ (resp. the variable xc and its updated
value x̃c in the generated C code) point to the same node in the shared value-graph.
Every reference to x and x̃ (resp. xc and x̃c) point to the same node.

Consider an equation pz := z$1 init 0. We use the variable m̃.z to capture the last
value of the signal z. In the generated C program, the last value of the variable zc is
denoted by m.zc. A second rule in our synchronous rules is that it is required that the
last values of a signal and the corresponding variable in the generated C code are the
same. That means m̃.z = m.zc.

Finally, we add rules that mirror the relation between input signals and their
corresponding variables in the generated C code. First, for any input signal x and

Modular Translation Validation of a Synchronous Compiler 31

the corresponding variable xc in the generated C code, if x is present, then the value
of x which is read from the environment and the value of the variable xc after the
read statement must be equivalent. That means x̃c and x̃ are represented by the same
subgraph in the graph. Second, if the clock of x is also read from the environment
as a parameter, then the clock of the input signal x is equivalent to the condition in
which the variable xc is updated. It means that we represent x̂ and C_xc by the same
subgraph. Consequently, every reference to x̂ and C_xc (resp. x̃ and x̃c) points to the
same node.

6.3 Illustrative Example

Let us illustrate the verification process (Fig. 8) on the program DEC and its generated
C code DEC_step() (Listing 5).

1 EXTERN logical DEC_step() {
2 C_FB = N <= 1;
3 if (C_FB) {
4 if (!r_DEC_FB(&FB)) return FALSE; % read input FB %
5 }
6 if (C_FB) N = FB; else N = N - 1;
7 w_DEC_N(N); % write output N %
8 DEC_step_finalize();
9 return TRUE;

10 }

Listing 5 Generated C code of DEC

In a first step, we shall compute the shared value-graph for both programs to
represent the computation of all signals and their corresponding variables. This graph
is depicted in Fig. 11. Note that in the C program, the variable Nc (“c” is added as

Fig. 11 The shared value-graph of DEC and DEC_step

superscript for the C program variables, to distinguish them from the signals in the
Signal program) is always updated (line (6)). In lines (2) and (6), the references to the
variable Nc are the references to the last value of Nc denoted by m.Nc. The variable

32 Ngo, Talpin, Gautier, Besnard, and Le Guernic

FBc which corresponds to the input signal FB is updated only when the variable
C_FBc is true.

In a second step, we shall normalize the above initial graph. Below is a potential
normalization scenario, meaning that it might have more than one normalization
scenario, and the validator can choose one of them. For example, given a set of rules
that can be applied, the validator can apply these rules in different order.

1. The clock of the output signal N is a master clock, which is indicated in the
generated C by the variable Nc being always updated. The node {N̂, ẐN} ∨ is
rewritten into true.

2. By rule ∧(true, x)→ x, the node {F̂B} ∧ is rewritten into {F̂B} <=.
3. The φ-function node representing the computation of N is removed and N points

to the node {Ñ} φ.
4. The φ-function node representing the computation of ZN is removed and ZN

points to the node {Z̃N} m̃.N.
5. The nodes F̃Bc and F̃B are rewritten into a single node {F̃B} F̃Bc. All references

to them are replaced by references to {F̃B} F̃Bc.
6. The nodes m.Nc and m̃.N are rewritten into a single node {m̃.N} m.Nc. All refer-

ences to them are replaced by references to {m̃.N} m.Nc.

Fig. 12 depicts an intermediate resulting graph of this normalization scenario (after
step 4), and Fig. 13 is the final normalized graph when we cannot perform any more
normalization. In the final step, we check that the value of the output signal and its

Fig. 12 Intermediate resulting value-graph of DEC and DEC_step

corresponding variable in the generated code merge into a single node. In this example,
we can safely conclude that the output signal N and its corresponding variable Nc are
equivalent since they point to the same node in the final normalized graph.

7 Detected Bugs

So far, our validator has revealed three previously unknown bugs in the implementa-
tion of the Signal compiler. The first bug was introduced when multiple constraints

Modular Translation Validation of a Synchronous Compiler 33

Fig. 13 The final normalized graph of DEC and DEC_step

condition a clock. The seconde problem is the wrong implementation of xor operator.
The last one is a syntax error in the generated C code from a Signal program, in which
a constant signal is used. In the following, we show how the validator captures these
classes of bugs through concrete examples.

7.1 Clock with Multiple Constraints

We consider a clock x that is defined in the Signal program P in Listing 6. The clock
of x is conditioned by two constraints, y ≤ 9 and y ≥ 1. That means that x is present
if and only if the signal y is present and holds a value in [1, 9].

1 % P.SIG %
2 | x ^= when (y <= 9)
3 | x ^= when (y >= 1)
4

5 % P_BASIC_TRA.SIG %
6 | CLK_x := when (y <= 9)
7 | CLK := when (y >= 1)
8 | CLK_x ^= CLK
9 | CLK ^= XZX_24

10

11 % P_BOOL_TRA.SIG %
12 | when Tick ^= C_z ^= C_CLK
13 | when C_z ^= x ^= z
14 | C_z := y <= 9
15 | C_CLK := y >= 1

Listing 6 Bug Example: Clock with Multiple Constraints

The clock calculation of the transformed programs P_BASIC_TRA and P_BOOL_TRA
is also given in Listing 6. In the transformed program P_BASIC_TRA, the compiler
introduces a fresh signal XZX_24 that is synchronized with CLK and CLK_x. The in-
troduction of the signal XZX_24 and the synchronization between CLK, CLK_x, and
XZX_24 cause an incorrect specification of clocks: the signal x might be absent when
XZX_24 is absent, which is not the case in P, nor in P_BOOL_TRA).

34 Ngo, Talpin, Gautier, Besnard, and Le Guernic

This bug was caught by our validator from the clock synthesis phase of the com-
piler. It found that there does not exist a refinement between the clock models of
P_BASIC_TRA and P_BOOL_TRA, or Φ(P_BOOL_TRA) @clk Φ(P_BASIC_TRA).

7.2 XOR Operator

The second problem was the wrong implementation of the xor operator as shown in
the program in Listing 7. In this program, the Boolean signal b3 is defined by the
Boolean expression (true xor true) and b1, meaning that b3 is synchronized with
b1 and whenever it is present it holds the value false. However, in the transformed
program P_BASIC_TRA, b1 and b3 are synchronized but whenever b3 is present, it
has the same value as b1.

1 % P.SIG %
2 | b3 := (true xor true) and b1
3

4 % P_BASIC_TRA.SIG %
5 | CLK_b1 := ^b1
6 | CLK_b1 ^= b1 ^= b3 | b3 := b1

Listing 7 Bug Example: Xor Operator

The validator has detected this bug in the clock synthesis phase of the compiler.
It found that there does not exist a refinement between the clock models of P and
P_BASIC_TRA, or Φ(P_BASIC_TRA) @clk Φ(P).

7.3 Constant Signal

The last detected problem was not found by the translation validation itself but was
indirectly discovered when trying to apply it on the code generation phase of the
Signal compiler. It occurred in a program in which a merge operator with a constant
signal was used, such as y := 1 default x.

1 % Version with bug %
2 if (C_y) {
3 y = 1; else y = x;
4 w_ClockError_y(y);
5 }
6

7 % Version without bug %
8 if (C_y) {
9 if (C_y) y = 1; else y = x;

10 w_ClockError_y(y);
11 }

Listing 8 Bug Example: Constant Signal

In this case, the compiler dealt wrongly with the clock context of a constant signal
by introducing a syntax error in the generated C code. The bug and its fix are given
in Listing 8. This bug was captured when the validator tried to construct the shared
SDVG graph of the transformed Signal program at the end of the static scheduling
synthesis phase and of the generated C program.

Modular Translation Validation of a Synchronous Compiler 35

8 Conclusion

We have presented an approach to compiler verification that adopts translation valida-
tion to build a formally verified compiler verifier within the existing Signal toolset.
Our approach focuses on the transformations performed by the compiler using the
simplest structures to represent them: SAT/SMT formulas represent the refinement
of clock models and the reinforcement of data-flow graphs, value-graphs are used
to represent the production of target code patterns from and a specification’s syntax
tree. This reduces the whole process of proving a refinement relation between the
source specification and the generated code to a couple of SMT SAT-checking on
formulas of minimal size, and to a symbolic rewriting on a reduced graph to check
value equivalence. Our validator does not modify or instrument the compiler. It treats
it as a “black box” (as long as there is no error in it). It only considers an input program
and its transformed result. Hence, it is not affected by an update or modification made
to this or that compilation stage, as long as its principle and data structure remain the
same. The validator is much simpler and smaller than the compiler itself. Proving its
correctness (the model builder, the verifier) would take a lot less effort than for the
compiler as well. Verification is fully automated and scales to large programs very well
by employing state-of-the-art verification tools and by minimizing the representation
of the problem to solve. For that purpose, we represent the desired program seman-
tics using a scalable abstraction and we use efficient SMT libraries [19] to achieve
the expected goals: traceability and formal evidence. We believe that this approach
provides a, both technically and economically, attractive alternative to developing a
certified compiler. The individual modules designed in the context of this project are
being integrated in the open-source environment of the Eclipse project POP with the
Polarsys Industry Working Group [54].

References

1. ACE: Ace supertest suite. http://www.ace.nl/compiler/supertest.html (2013)
2. Ackerman, W.: Solvable cases of the Decision Problem. Studies in logic and the foundations of

mathematics. North-Holland, Amsterdam (1954)
3. Astrée: The static program analyzer. http://www.astree.ens.fr/ (2014)
4. Aubry, P., Le Guernic, P., Machard, S.: Synchronous distribution of Signal programs. In: Proceedings

of the 29th Hawaii International Conference on System Sciences, IEEE Computer Society Press, vol. 1,
pp. 656–665 (1996)

5. Benveniste, A., Le Guernic, P.: Hybrid dynamical systems theory and the Signal language. IEEE
Transactions on Automatic Control 35(5), 535–546 (1990)

6. Berry, G.: The foundations of Esterel. In Proof, Language and Interaction: Essays in Honor of Robin
Milner, MIT Press (2000)

7. Besnard, L., Gautier, T., Le Guernic, P.: SIGNAL V4-INRIA version: Reference Manual (2010).
http://www.irisa.fr/Polychrony/documentation.php

8. Besnard, L., Gautier, T., Le Guernic, P., Talpin, J.P.: Compilation of polychronous data-flow equations.
In: Synthesis of Embedded Software, pp. 1–40. Springer (2010)

9. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume 185 Frontiers in
Artificial Intelligence and Applications. IOS Press, Amsterdam, The Netherlands (2009)

10. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
A static analyzer for large safety-critical software. In: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation, PLDI ’03, pp. 196–207 (2003)

http://www.ace.nl/compiler/supertest.html
http://www.astree.ens.fr/
http://www.irisa.fr/Polychrony/documentation.php

36 Ngo, Talpin, Gautier, Besnard, and Le Guernic

11. Blazy, S.: Which C semantics to embed in the front-end of a formally verified compiler? In: Tools and
Techniques for Verification of System Infrastructure (2008)

12. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end. In: Proceedings of the
14th International Conference on Formal Methods, Lecture Notes in Computer Science (LNCS 4085),
pp. 460–475. Springer (2006)

13. Blazy, S., Robillard, B., Appel, A.: Formal verification of coalescing graph-coloring register allocation.
In: 19th European Symposium On Programming (ESOP 2010), Lecture Notes in Computer Science
(LNCS 6012), pp. 145–164. Springer (2010)

14. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Spinger-Verlag (1996)
15. Brown, D., Delseny, H., Hayhurst, K., Wiels, V.: Guidance for using formal methods in a certification

context. In: Embedded Real Time Software and Systems (ERTS2) (2010)
16. Chirica, L.M., Martin, D.F.: Towards compiler implementation correctness proofs. ACM TOPLAS

(1986)
17. CompCert: CompCert C verified compiler. http://compcert.inria.fr/partners.html (2014)
18. Coq-Inria: Coq proof assistant. http://coq.inria.fr/ (2014)
19. Dutertre, B., de Moura, L.: Yices SMT solver. http://yices.csl.ri.com (2009)
20. Feautrier, P., Gamatié, A., Gonnord, L.: Enhancing the compilation of synchronous data-flow programs

with combined numerical-boolean abstraction. In CSI Journal of Computing 1(4), 86–99 (2012)
21. França, R.B., Blazy, S., Favre-Félix, D., Leroy, X., Pantel, M., Souyris, J.: Formally verified optimizing

compilation in ACG-based flight control software. In: Embedded Real Time Software and Systems
(ERTS2) (2012)

22. Gamatié, A.: Designing Embedded Systems with the Signal Programming Language. Springer (2009)
23. Gamatié, A., Gautier, T., Le Guernic, P.: Towards static analysis of Signal programs using interval

techniques. In: Synchronous Languages, Applications, and Programming (SLAP’06) (2006)
24. Gamatié, A., Gonnord, L.: Static analysis of synchronous programs in Signal for efficient design of

multi-clocked embedded systems. In: ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
Tools and Theory for Embedded Systems, LCTES’2011 (2011)

25. Gautier, T., Le Guernic, P.: Code generation in the SACRES project. In: Towards System Safety,
Proceedings of the Safety-critical Systems Symposium, pp. 127–149 (1999)

26. GeneAuto: GeneAuto project. www.geneauto.org (2014)
27. George, L., Appel, A.W.: Iterated register coalescing. TOPLAS 18(3), 300–324 (1996)
28. Halbwachs, N.: A synchronous language at work: the story of Lustre. In: 3th ACM-IEEE International

Conference on Formal Methods and Models for Codesign (MEMOCODE’05) (2005)
29. Izerrouken, N., Kai, O.S.Y., Pantel, M., Thirioux, X.: Use of formal methods for building qualified code

generator for safer automotive systems. In: Proceedings of the 1st Workshop on Critical Automotive
applications: Robustness and Safety, pp. 53–56 (2010)

30. Izerrouken, N., Pantel, M., Thirioux, X.: Machine checked sequencer for critical embedded code
generator. In: International Conference on Formal Engineering Methods (ICFEM 2009), pp. 521–540
(2009)

31. Jackson, D.: A direct path to dependable software. Communications of the ACM 52(4), 78–88 (2009)
32. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM Journal on Computing

4(1), 77–84 (1975)
33. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual machine and

compiler. TOPLAS 28(4), 619–695 (2006)
34. Le Guernic, P., Gautier, T.: Data-flow to von Neumann: the Signal approach. In: Advanced Topics in

Data-Flow Computing, pp. 413–438 (1991)
35. Le Guernic, P., Le Borgne, M., Gautier, T., Le Maire, C.: Programming real-time applications with

Signal. Proceedings of the IEEE 79(9), 1321–1336 (1991)
36. Ledinot, E., Pariente, D.: Formal methods and compliance to the DO-178C/ED12C standard in

aeronautics. In: Static Analysis of Software, pp. 207–272. John Wiley & Sons (2012)
37. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0 compiler: code generation

and implementation correctness. In: Third IEEE International Conference on Software Engineering
and Formal Methods (SEFM 2005) (2005)

38. Leroy, X.: Formal certification of a compiler back-end, or: Programming a compiler with a proof
assistant. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 42–54 (2006)

39. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning 43(4), 363–446
(2009)

http://compcert.inria.fr/partners.html
http://coq.inria.fr/
http://yices.csl.ri.com
www.geneauto.org

Modular Translation Validation of a Synchronous Compiler 37

40. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for verifying program
transformations. Journal of Automated Reasoning 41(1), 1–31 (2008)

41. Leviathan, R., Pnueli, A.: Validating software pipelining optimizations. In: Int. Conf. on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES 2002), pp. 280–287 (2006)

42. Maffeïs, O., Le Guernic, P.: Distributed implementation of Signal: Scheduling and graph clustering.
In: 3rd International School and Symposium on Formal Techniques in Real-time and Fault-tolerant
Systems, LNCS 863, pp. 547–566 (1994)

43. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation (PLDI’00), pp. 83–94 (2000)

44. Ngo, V.C., Talpin, J.P., Gautier, T.: Efficient deadlock detection for polychronous data-flow specifica-
tions. In: Electronic System Level Synthesis Conference (ESLsyn 2014) (2014)

45. Ngo, V.C., Talpin, J.P., Gautier, T.: Translation validation for synchronous data-flow specification in the
Signal compiler. In: Formal Techniques for Distributed Objects, Components and Systems (FORTE
2015), LNCS 9039. Springer (2015)

46. Ngo, V.C., Talpin, J.P., Gautier, T., Le Guernic, P.: Translation validation for clock transformations
in a synchronous compiler. In: International Conference on Fundamental Approaches to Software
Engineering (FASE 2015), LNCS 9033. Springer (2015)

47. Ngo, V.C., Talpin, J.P., Gautier, T., Le Guernic, P., Besnard, L.: Formal verification of compiler
transformations on polychronous equations. In: Proceedings of 9th International Conference on
Integrated Formal Methods (IFM 2012), LNCS 7321. Springer (2012)

48. Ottenstein, K.J., Ballance, R.A., MacCabe, A.B.: The program dependence web: A representation
supporting control, data, and demand driven interpretation of imperative languages. In: Proc. of the
SIGPLAN’90 Conference on Programming Language Design and Implementation, pp. 257–271 (1990)

49. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software development environ-
ment. ACM SIGSOFT Software Engineering Notes 9(3), 177–184 (1984)

50. Pnueli, A., Shtrichman, O., Siegel, M.: Translation validation: From Signal to C. In: Correct System
Design, Recent Insight and Advances, LNCS 1710, pp. 231–255. Springer-Verlag (2000)

51. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Proceedings of the 4th International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS ’98), LNCS
1384, pp. 151–166. Springer-Verlag (1998)

52. Poetzsch-Heffter, A., Gawkowski, M.: Towards proof generating compilers. Electronic Notes in
Theoretical Computer Science 132(1) (2005)

53. Polak, W.: Compiler Specification and Verification, Lecture Notes In Computer Science, vol. 124.
Springer-Verlag (1981)

54. Polarsys project POP: Polychrony on Polarsys. https://www.polarsys.org/projects/
polarsys.pop (2015)

55. Rinard, M.: Credible compilers. Tech. Rep. 776, Massachusetts Institute of Technology (1999)
56. Rushby, J.: New challenges in certification for aircraft software. In: Proceedings of the Ninth ACM

International Conference On Embedded Software (EMSOFT) (2011)
57. Stump, A., Deters, M.: SMT-Comp. http://www.smtcomp.org/2009 (2009)
58. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: A new approach to optimization. In:

Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 264–276 (2009)

59. Thatcher, J.W., Wagner, E.G., Wright, J.B.: More on advice on structuring compilers and proving them
correct. In: Semantics-Directed Compiler Generation, Lecture Notes In Computer Science, vol. 94
(1980)

60. Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation validation for LLVM.
In: Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (2011)

61. Tristan, J.B., Leroy, X.: A simple, verified validator for software pipelining. In: Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
83–92 (2010)

62. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: VOC: A translation validator for optimizing compilers.
Electronic Notes in Theoretical Computer Science 65(2) (2002)

63. Zuck, L., Pnueli, A., Leviathan, R.: Validation of optimizing compilers. Tech. Rep. MCS01-12,
Weizmann Institute of Science (2001)

https://www.polarsys.org/projects/polarsys.pop
https://www.polarsys.org/projects/polarsys.pop
http://www.smtcomp.org/2009

	Introduction
	Related Work
	Modular Translation Validation
	Preservation of Clock Models
	Preservation of Data Dependencies
	Value-equivalence of Variables
	Detected Bugs
	Conclusion

