Formal Verification of Compiler
Transformations on Polychronous
Equations

Van Chan Ngo
Project-Team ESPRESSO
April 12, 2012 — 68ngrt seminar-INRIA/IRISA

Y 4

informatics 4” mathematics

eUA—

work published at IFM 2012

Synchronous data-flow languages

Have been successfully used in development of
embedded and critical real-time systems

Provide some powerful facilities: simulation, verification,
synthesis, code generation,...

Fulfill the high requirements of efficient and reliable
implementations with (at source level): static analysis,
model checking, program proof

Polychronous model

* Inputs, outputs: flows of values along time
 Time: discrete and instants are numbered by integers

* Abstract clock: the set of instances that the values of the
corresponding data-flow are present

* Flow interactions: specified using clock relations
e System: defined by a system of equations

Examples: Clock Constraint Specification Language, LUSTRE,
SIGNAL

An example

time

time

time

ﬂ
O
@)

© O ©

e o0
000
o000

ALARM := HOUR when (=0)

1 :Value is absent
Value of ALARM is present if values of HOUR and are
present and the value of is O

Synchronous

compilers

Compiler perform translations, optimizations before

generating code

Translations

Synchronous Intermediate

Program

I ‘ e | ‘ Code I
Optimizations Generation

Intermediate C/C++, Java
Form Code

Form

Synchronous Compiler |

Is there any bug of this compiler?

Objectives

Code
Generation

Synchronous Intermediate Intermediate C/C++, Java

Program Form Form Code

Our work

* Prove the correctness of the compiler transformations

* Correctness: ensuring that the abstract clock relation
semantics are preserved during the transformations

 An automated process to carry out the proof of the
correctness

Approach

Adopting the translation validation approach of Pnueli et al’,
our verification process consists of:

* Formal models capture the abstract clock relation
semantics of the source program and its compiled form

 Formal definition of correct transformation (refinement)

* An automated proof method based on simulation
techniques

("JA. Pnueli, O. Shtrichman, and M. Siegel, Translation validation: From SIGNALto C -

Approach

Each individual transformation is followed by our verification

Validation

Source Compiled

Program 4 | Form
Transformation

]
Yy

Advantages

* Avoid the disadvantage of compiler verification approach®

* Independence of how the compiler generates the output
from the input

* The verification process is fully automated

(*JProves the correctness of the compiler in advance then every change requires redoing the proof

Outline

The formal model

Correct transformation: Refinement
Proving refinement by simulation
Implementation with SIGALI

oA e

Conclusion

10

Formal model

Use a variable x over a finite field modulo 3 to encode the
value and status of the data-flow x

present A false present
absent 0 absent 0
present A true 1

Then the abstract clock is encoded by x?

11

Polynomial Dynamical System

y = R(x,,...,x,) of data-flows are represented as a polynomial
equation

The program can be modeled as a PDS:

QX,Y) = 0
{ X = P(X,Y)
Q(X) = 0

X: state variables (encode the delay operators),
Y: event variables,

X" = P(X,Y): evolution equations,

Q(X,Y) = 0: constraint equations,

Q,(X) = 0: initialization equations.

12

PDS model of SIGNAL

Boolean signals

y :=not x y=—-X
z:=xandy izzx}};gxy X=y=1)
Z:=Xxo0ry)Z(QZX}}Q X=y=xy)
z := x default y z=x+(1-x%)y
z = x when y z=x(—y—y?y

&=x+(1-x%)¢
y = x$1 init yq y = x?%¢

§o = Yo

Non-boolean signals

y = f(Xq,..., Xp) Y =X = .. =X}
z = x default y 7% = X° 4 y? — x°y?
Z:=x wheny 7% = x?(—y — y?)
y = x$1 init y y? = x°

13

An example

process a
(?7 even

X =

where
boolean
ZX 1nit
end;

ltern =
t A, B,

not zX
Xs 1
when X
when 77X

X,
false;

initial equations:

£ =—1

evolution equations:
§'=x+(1-x%)x¢
constralnt equations:
X = —2X,2X = & * X?,

& =—X—Xx°b%=—zx— zx°

14

Intentional Labeled Transition System

A PDS can be viewed asanilTSL=(S, Y, |, T), where:
S C (Z/37)": set of states,
Y: set of event variables,
I = Sol(Q,(X)): set of initial states,

T € Sxz/3Z[Y] x S: the symbolic transition relation.

A transition label can be computed directly from PDS by
P(Y)=Q(s,Y)® (P(s,Y)—§)

15

An example

The iLTS of “altern” PDS

$={1,0,1}

Y={a, b, x, zx}

I ={-1}

Tr={(-1, P,(Y), 0), ...}, where

P.(Y) = (x—(1-x?) @(x +2x) @ (zx + x?) @(a? + x + x?) @ (b? + zx + 2x?)

16

Action-based execution

* An infinite (finite) sequence o =s,,y,,5,,Y;... IS an
execution if:

-sp €l
. EIOP(Y). ((si, P(Y),six1) € T Ayi € Sol(P(Y))),Vi € N

* The sequence o, =y,Y,... is an action-based execution

* |ILIl, [[Lt]l,.; denote the sets of executions and action-based
executions of an iLTS L, respectively

* Then ||L||,. represents the abstract clock relation
semantics of the corresponding synchronous program

Correct transformation

Given two iLTSs L, L,, they have the same semantics if:

Voact-((0act € ||L2||act = cact € ||L1||act) N
(cact € ||L1]|act = cact € ||L2]]act))

18

Refinement

In practice, the requirement is too strong (e.g. program is
non-deterministic,...), it should be relaxed as follows:

Voact-(Tact € ||L1]|act = Tact € ||L2]|act)

We say that L, is a correct transformation of L, or L, refines
L,, denotedas L, L L,

19

Symbolic simulation

A symbolic simulation for (L,, L,) is a binary relation
R C 51 x S such that:

1. foranys,if sy €h,3s, € b,(s1,82) €R

2. forany (s1,s2) € R it holds:
if (s1,P,s}) € T1 then there exists a finite set of transitions
(2, P, sh)ics € To with (P=T[P)=0A(q},q) e R,Viel

iel

20

Simulation order

R can be completed to

but not necessarily:

S1
R can be completed to

So — Sh

Proving refinement by simulation

L, is simulated by L,, denoted as L ,< L,, if there exists a
symbolic simulation for them.

Let L, L, be two iLTSs. If there exists a symbolic
simulation for (L, L,), then L, £ L, (Soundness)

Symbolic simulation is a preorder, i.e, reflexive and
transitive

22

SIGNAL compiler transformations

(| N := FB default (ZN-1) (] (] CLK_N := AN
| ZN := N$1 init 1 a | CLK_N A= N
| FB A= when (ZN<=1) | ACT_CLK_N{}

) 1)

(]| CLK_N A=ZN

| (| CLK_FB := when (ZN<=1)
| CLK_FB A= FB
| CLK := when (not (ZN<=1))

(| (] Tick :=true

=== Translations: clock calculation, rewriting to : ngTenT_TicklE}% N
_Tic
kernel operators,... 0
=== Optimizations: eliminating sub-expression, (| when Tick A= 2N A= C_FB A= C
trivial clock constraints, clock assignment | (| when C_FB A=FB |)

| C_FB :=ZN<=1

to generate code, ... | C:= not (ZN<=1)
)

)

23

Implementation

* SIGALI is model checker which manipulates polynomial
over the finite filed modulo 3

e SIGALI bases on BDD representation to represent
polynomial efficiently

* Implement an iterative algorithm to compute the
symbolic simulation as an extended library of SIGALI

* Then each transformation of the SIGNAL compiler is followed
by our verification process

Conclusion

e A translation validation based verification process.

* Polynomial dynamical systems to represent synchronous
programs.

* Formal definition of correct transformation.
 An automated proof method using simulation.

* Application to prove the correctness the SIGNAL compiler
transformations.

Thank Youl!

26

