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Abstract. We present a method to construct a validator based on trans-
lation validation approach to prove the value-equivalence of variables in
the compilation of the Signal compiler. The computation of output sig-
nals in a Signal program and their counterparts in the generated C code
is represented by a Synchronous Data-flow Value-Graph (Sdvg). Our val-
idator proves that every output signal and its counterpart variable have
the same values by transforming the Sdvg graph.
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1 Introduction

Motivation A compiler is a large and very complex program which often con-
sists of hundreds of thousands, if not millions, lines of code, and is divided into
multiple sub-systems and modules. In addition, each compiler implements a par-
ticular algorithm in its own way. That results in two main drawbacks regarding
the formal verification of the compiler itself. First, constructing the specifica-
tions of the actual compiler implementation is a long and tedious task. Second,
the correctness proof of a compiler implementation, in general, cannot be reused
for another compiler.

To deal with these drawbacks of formally verifying the compiler itself, one
can prove that the source program and the compiled program are semantically
equivalent, which is the approach of translation validation [13,12,5]. The princi-
ple of translation validation is as follows: the source and the compiled programs
are represented in a common semantics. Based on the representations of the
input and compiled programs, the notion of “correct transformation” is formal-
ized. An automated proof method is provided to generate the proof scripts in
case the compiled program implements correctly the input program. Otherwise,
it produces a counter-example.

In this work, to adopt the translation validation approach, we use a value-
graph as a common semantics to represent the computation of variables in the
source and compiled programs. The “correct transformation” is defined by the
assertion that every output variable in the source program and the corresponding
variable in the compiled program have the same values.

c© IFIP International Federation for Information Processing 2015
S. Graf and M. Viswanathan (Eds.): FORTE 2015, LNCS 9039, pp. 66–80, 2015.
DOI: 10.1007/978-3-319-19195-9_5



Translation Validation for Synchronous Data-Flow Specification 67

The Language. Signal [3,7] is a synchronous data-flow language that allows
the specification of multi-clocked systems. Signal handles unbounded sequences
of typed values (x(t))t∈N, called signals, denoted by x. Each signal is implicitly
indexed by a logical clock indicating the set of instants at which the signal is
present, noted Cx. At a given instant, a signal may be present where it holds a
value, or absent where it holds no value (denoted by ⊥). Given two signals, they
are synchronous iff they have the same clock. In Signal, a process (written P
or Q) consists of the synchronous composition, noted |, of equations over signals
x, y, z, written x := y op z or x := op(y, z), where op is an operator. Naturally,
equations and processes are concurrent.

Contribution. A Sdvg symbolically represents the computation of the output
signals in a Signal program and their counterparts in its generated C code. The
same structures are shared in the graph, meaning that they are represented by
the same subgraphs. Suppose that we want to show that an output signal and
its counterpart have the same values. In order to do that we simply check that
they are represented by the same subgraphs, meaning they label the same node.
We manage to realize this check by transforming the graph using some rewrite
rules, which is called normalizing process.

Let A and C be the source program and its generated C code. Cp denotes the
unverified Signal compiler which compiles A into C = Cp(A) or a compilation
error. We now associate Cp with a validator checking that for any output signal x
in A and the corresponding variable xc in C, they have the same values (denoted
by x̃ = ˜xc). We denote this fact by C �val A.

1 if (Cp(A) is Error) return Error;
2 else {
3 if (C �val A) return C;
4 else return Error;
5 }

The main components of the validator are depicted in Fig. 1. It works as follows.
First, a shared value-graph that represents the computation of all signals and
variables in both programs is constructed. The value-graph can be considered as
a generalization of symbolic evaluation. Then, the shared value-graph is trans-
formed by applying graph rewrite rules (the normalization). The set of rewrite
rules reflects the general rules of inference of operators, or the optimizations of
the compiler. For instance, consider the 3-node subgraph representing the ex-
pression (1 > 0), the normalization will transform that graph into a single node
subgraph representing the value true, as it reflects the constant folding. Finally,
the validator compares the values of the output signals and the corresponding
variables in the C code. For every output signal and its corresponding variable,
the validator checks whether they point to the same node in the graph, mean-
ing that their computation is represented by the same subgraph. Therefore, in
the best case, when semantics has been preserved, this check has constant time
complexityO(1). In fact, it is always expected that most transformations and op-
timizations are semantics-preserving, thus the best-case complexity is important.
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Fig. 1. Sdvg Translation Validation Architecture

This work is a part of the whole work of the Signal compiler formal veri-
fication. Our approach is that we separate the concerns and prove each analy-
sis and transformation stage of the compiler separately with respect to ad-hoc
data-structures to carry the semantic information relevant to that phase. The
preservation of the semantics can be decomposed into the preservation of clock
semantics at the clock calculation and Boolean abstraction phase, the preserva-
tion of data dependencies at the static scheduling phase, and value-equivalence
of variables at the code generation phase. Fig. 2 shows the integration of this
verification framework into the compilation process of the Signal compiler. For
each phase, the validator takes the source program and its compiled counterpart,
then constructs the corresponding formal models of both programs. Finally, it
checks the existence of the refinement relation to prove the preservation of the
considered semantics. If the result is that the relation does not exist then a
“compiler bug” message is emitted. Otherwise, the compiler continues its work.

Outline The remainder of this paper is organized as follows. In Section 2,
we consider the formal definition of Sdvg and the representation of a Signal
program and its generated C code as a shared Sdvg. Section 3 addresses the
mechanism of the verification process based on the normalization of a Sdvg.
Section 4 illustrates the concept of Sdvg and the verification procedure. Section
5 terminates this paper with some related work, a conclusion and an outlook to
future work.

2 Synchronous Data-Flow Value-Graph

Let X be the set of variables which are used to denote the signals, clocks and
variables in a Signal program and its generated C code, and F be the set of
function symbols. In our consideration, F contains usual logic operators (not,
and, or), numerical comparison functions (<, >, =, <=, >=, /=), numerical
operators (+, -, *, /), and gated φ-function [2]. A gated φ-function such as
x = φ(c, x1, x2) represents a branching in a program, which means x takes the
value of x1 if the condition c is satisfied, and the value of x2 otherwise. A constant
is defined as a function symbol of arity 0.
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Fig. 2. The Translation Validation for the SIGNAL Compiler

Definition 1. A Sdvg associated with a Signal program and its generated C
code is a directed graph G = 〈N,E, lN ,mN〉 where N is a finite set of nodes that
represent clocks, signals, variables, or functions. E ⊆ N ×N is the set of edges
that describe the computation relations between nodes. lN : N −→ X ∪ F is a
mapping labeling each node with an element in X ∪ F . mN : N −→ P(N) is a
mapping labeling each node with a finite set of clocks, signals, and variables. It
defines the set of equivalent clocks, signals and variables.

A subgraph rooted at a node is used to describe the computation of the corre-
sponding element labelled at this node. In a graph, for a node labelled by y, the
set of clocks, signals or variables mN (y) = {x0, ..., xn} is written as a node with
label {x0, ..., xn} y.

2.1 SDVG of SIGNAL Program

Let P be a Signal program, we write X = {x1, ..., xn} to denote the set of
all signals in P which consists of input, output, state (corresponding to delay
operator) and local signals, denoted by I, O, S and L, respectively. For each
xi ∈ X , Dxi denotes its domain of values, and D

⊥
xi

= Dxi ∪{⊥} is the domain of
values with the absent value. Then, the domain of values of X with absent value
is defined as follows: D⊥

X =
⋃n

i=1 Dxi ∪ {⊥}. For each signal xi, it is associated
with a Boolean variable x̂i to encode its clock at a given instant t (true: xi

is present at t, false: xi is absent at t), and x̃i with the same type as xi to
encode its value. Formally, the abstract values to represent the clock and value
of a signal can be represented by a gated φ-function, xi = φ(x̂i, x̃i,⊥).
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Assume that the computation of signals in processes P1 and P2 is represented
as shared value-graphs G1 and G2, respectively. Then the value-graph G of the
synchronous combination process P1|P2 can be defined as G = 〈N,E, lN ,mN 〉 in
which for any node labelled by x, we replace it by the subgraph that is rooted by
the node labelled by x in G1 and G2. Every identical subgraph is reused, in other
words, we maximize sharing among graph nodes in G1 and G2. Thus, the shared
value-graph of P can be constructed as a combination of the sub-value-graphs
of its equations.

A Signal program is built through a set of primitive operators. Therefore,
to construct the Sdvg of a Signal program, we construct a subgraph for each
primitive operator. In the following, we present the value-graph corresponding
to each Signal primitive operator.

Stepwise Function. Consider the equation using the stepwise function y :=
f(x1, ..., xn), it indicates that if all signals from x1 to xn are defined, then the
output signal y is defined by applying f on the values of x1, ..., xn. Otherwise, it is
assigned no value. Thus, the computation of y can be represented by the following
gated φ-function: y = φ(ŷ, f(x̃1, x̃2, ..., x̃n),⊥), where ŷ ⇔ x̂1 ⇔ x̂2 ⇔ ... ⇔ x̂n

(since they are synchronous). The graph representation of the stepwise function
is depicted in Fig. 3. Note that in the graph, the node labelled by {x̂1, ..., x̂n} ŷ
means that mN (ŷ) = {x̂1, ..., x̂n}. In other words, the subgraph representing the
computation of ŷ is also the computation of x̂1, ..., and x̂n.

{x̂1, ..., x̂n} ŷ

φ

⊥

{ỹ} f

x̃1

φ

x̃2

φ

... x̃n

φ

{x̂} ŷ

φ

⊥

{ỹ} m̃.x

{m̃.x0} a

Fig. 3. The graphs of y := f(x1, ..., xn) and y := x$1 init a

Delay. Consider the equation using the delay operator y := x$1 init a. The
output signal y is defined by the last value of the signal x when the signal
x is present. Otherwise, it is assigned no value. The computation of y can be
represented by the following nodes: y = φ(ŷ, m̃.x,⊥) and m̃.x0 = a, where ŷ ⇔
x̂. m̃.x and m̃.x0 are the last value of x and the initialized value of y. The graph
representation is depicted in Fig. 3.
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Merge. Consider the equation which corresponds to the merge operator y :=
x default z. If the signal x is defined then the signal y is defined and holds
the value of x. The signal y is assigned the value of z when the signal x is
not defined and the signal z is defined. When both x and z are not defined, y
holds no value. The computation of y can be represented by the following node:
y = φ(ŷ, φ(x̂, x̃, z̃),⊥), where ŷ ⇔ (x̂ ∨ ẑ). The graph representation is depicted
in Fig. 4. Note that in the graph, the clock ŷ is represented by the subgraph of
x̂ ∨ ẑ.

{ŷ} ∨

φ

⊥

{ỹ} φx̂ ẑ

x̃

φ

z̃

φ

{ŷ} ∧

φ

⊥

{ỹ} x̃φx̂ ∧

b̂ ˜b

φ

Fig. 4. The graphs of y := x default z and y := x when b

Sampling. Consider the equation which corresponds to the sampling operator
y := x when b. If the signal x, b are defined and b holds the value true, then
the signal y is defined and holds the value of x. Otherwise, y holds no value.
The computation of y can be represented by the following node: y = φ(ŷ, x̃,⊥),

where ŷ ⇔ (x̂ ∧ b̂ ∧˜b). Fig. 4 shows its graph representation.

Restriction. The graph representation of restriction process P1\x is the same
as the graph of P1.

Clock Relations. Given the above graph representations of the primitive op-
erators, we can obtain the graph representations for the derived operators on
clocks as the following gated φ-function z = φ(ẑ, true,⊥), where ẑ is computed
as ẑ ⇔ x̂ for z := x̂, ẑ ⇔ (x̂ ∨ ŷ) for z := xˆ+ y, ẑ ⇔ (x̂ ∧ ŷ) for z := xˆ∗ y,

ẑ ⇔ (x̂ ∧ ¬ŷ) for z := xˆ− y, and ẑ ⇔ (b̂ ∧ ˜b) for z := when b. For the clock
relation xˆ= y, it is represented by a single node graph labelled by {x̂} ŷ.

2.2 SDVG of Generated C Code

For constructing the shared value-graph, the generated C code is translated into
a subgraph along with the subgraph of the Signal program. Let A be a Signal
program and C its generated C code, we write XA = {x1, ..., xn} to denote the
set of all signals in A, and XC = {xc

1, ..., x
c
m} to denote the set of all variables in
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C. We added “c” as superscript for the variables, to distinguish them from the
signals in A.

As described in [4,8,6,1], the generated C code of A consists of the following
files:

• A main.c is the implementation of the main function. It opens the IO com-
munication channels by calling functions provided in A io.c, and calls the
initialization function. Then it calls the step function repeatedly in an infi-
nite loop to interact with the environment.

• A body.c is the implementation of the initialization function and the step
function. The initialization function is called once to provide initial values
to the program variables. The step function, which contains also the step
initialization and finalization functions, is responsible for the calculation of
the outputs to interact with the environment. This function, which is called
repeatedly in an infinite loop, is the essential part of the concrete code.

• A io.c is the implementation of the IO communication functions. The IO
functions are called to setup communication channels with the environment.

The scheduling and the computations are done inside the step function. There-
fore, it is natural to construct a graph of this function in order to prove that
its variables and the corresponding signals have the same values. To construct
the graph of the step function, the following considerations need to be studied.
The generated C code in the step function consists of only the assignment and
if-then statements. For each signal named x in A, it has a corresponding
Boolean variable named C x in the step function. Then the computation of x is
implemented by a conditional if-then statement as follows:

1 if (C_x) {
2 computation(x);
3 }

If x is an input signal then its computation is the reading operation which
gets the value of x from the environment. In case x is an output signal, after
computing its value, it will be written to the IO communication channel with the
environment. Note that the C programs use persistent variables (e.g., variables
which always have some value) to implement the Signal program A which uses
volatile variables. As a result, there is a difference in the types of a signal in the
Signal program and of the corresponding variable in the C code. When a signal
has the absent value, ⊥, at a given instant, the corresponding C variable always
has a value. This implies that we have to detect when a variable in the C code
such that whose value is not updated. In this case, it will be assigned the absent
value, ⊥. Thus, the computation of a variable, called xc, can fully be represented
by a gated φ-function xc = φ(C xc, ˜xc,⊥), where ˜xc denotes the newly updated
value of the variable.

In the generated C code, the computation of the variable whose clock is the
master clock, which ticks every time the step function is called, and the compu-
tation of some local variables (introduced by the Signal compiler) are imple-
mented using the forms below.
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It is obvious that x is always updated when the step function is invoked. The
computation of such variables can be represented by a single node graph labelled
by { ˜xc} xc. That means the variable xc is always updated and holds the value
˜xc.

1 if (C_x) {
2 computation(x);
3 } else computation(x);
4 // or without if-then
5 computation(x)

Considering the following code segment, we observe that the variable x is
involved in the computation of the variable y before the updating of x.

1 if (C_y) {
2 y = x + 1;
3 }
4 // code segment
5 if (C_x) {
6 x = ...
7 }

In this situation, we refer to the value of x as the previous value, denoted by
m.xc. It happens when a delay operator is applied on the signal x in the Signal
program. The computation of y is represented by the following gated φ-function:
yc = φ(C yc,m.xc + 1,⊥).

3 Translation Validation of SDVG

In this section, we introduce the set of rewrite rules to transform the shared value-
graph resulting from the previous step. This procedure is called normalizing. At
the end of the normalization, for any output signal x and its corresponding
variable xc in the generated C code, we check whether x and xc label the same
node in the resulting graph. The normalizing procedure can be adapted with
any future optimization of the compiler by updating the set of rewrite rules.

3.1 Normalizing

Once a shared value-graph is constructed for the Signal program and its gen-
erated C code, if the values of an output signal and its corresponding variable
in the C code are not already equivalent (they do not point the same node in
the shared value-graph), we start to normalize the graph. Given a set of term
rewrite rules, the normalizing process works as described below. The normalizing
algorithm indicates that we apply the rewrite rules to each graph node individ-
ually. When there are no more rules that can be applied to the resulting graph,
we maximize the shared nodes, reusing the identical subgraphs. The process
terminates when there exists no more sharing or rules that can be applied.

We classify our set of rewrite rules into three basic types: general simplification
rules, optimization-specific rules and synchronous rules. In the following, we shall
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present the rewrite rules of these types, and we assume that all nodes in our
shared value-graph are typed. We write a rewrite rule in form of term rewrite
rules, tl → tr, meaning that the subgraph represented by tl is replaced by the
subgraph represented by tr when the rule is applied. Due to the lack of space, we
only present a part of these rules, the full set of rules is shown in the appendix.

1 // Input: G: A shared value-graph. R: The set of
2 // rewrite rules. S: The sharing among graph nodes.
3 // Output: The normalized graph
4 while (∃s ∈ S or ∃r ∈ R that can be applied on G) {
5 while (∃r ∈ R that can be applied on G) {
6 for (n ∈ G)
7 if (r can be applied on n)
8 apply the rewrite rule to n
9 }

10 maximize sharing
11 }
12 return G

General Simplification Rules. The general simplification rules contain the
rules which are related to the general rules of inference of operators, denoted
by the corresponding function symbols in F . In our consideration, the operators
used in the primitive stepwise functions and in the generated C code are usual
logic operators, numerical comparison functions, and numerical operators. When
applying these rules, we will replace a subgraph rooted at a node by a smaller
subgraph. In consequence of this replacement, we will reduce the number of
nodes by eliminating some unnecessary structures. The first set of rules simplifies
numerical and Boolean comparison expressions. In these rules, the subgraph t
represents a structure of value computing (e.g., the computation of expression
b = x �= true). These rules are self explanatory, for instance, with any structure
represented by a subgraph t, the expression t = t can always be replaced with a
single node subgraph labelled by the value true.

= (t, t) → true

�= (t, t) → false

The second set of general simplification rules eliminates unnecessary nodes in
the graph that represent the φ-functions, where c is a Boolean expression. For
instance, we consider the following rules.

φ(true, x1, x2) → x1

φ(c, true, false) → c
φ(c, φ(c, x1, x2), x3) → φ(c, x1, x3)

The first rule replaces a φ-function with its left branch if the condition always
holds the value true. The second rule operates on Boolean expressions repre-
sented by the branches. When the branches are Boolean constants and hold
different values, the φ-function can be replaced with the value of the condition
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c. Consider a φ-function such that one of its branches is another φ-function.
The third rule removes the φ-function in the branches if the conditions of the
φ-functions are the same.

Optimization-Specific Rules. Based on the optimizations of the Signal com-
piler, we have a number of optimization-specific rules in a way that reflects the
effects of specific optimizations of the compiler. These rules do not always re-
duce the graph or make it simpler. One has to know specific optimizations of the
compiler when she wants to add them to the set of rewrite rules. In our case, the
set of rules for simplifying constant expressions of the Signal compiler such as:

+(cst1, cst2) → cst, where cst = cst1 + cst2
∧(cst1, cst2) → cst, where cst = cst1 ∧ cst2
�(cst1, cst2) → cst

where � denotes a numerical comparison function, and the Boolean value cst is
the evaluation of the constant expression �(cst1, cst2) which can hold either the
value false or true.

We also may add a number of rewrite rules that are derived from the list of
rules of inference for propositional logic. For example, we have a group of laws
for rewriting formulas with and operator, such as:

∧(x, true) → x
∧(x,⇒ (x, y)) → x ∧ y

Synchronous Rules. In addition to the general and optimization-specific rules,
we also have a number of rewrite rules that are derived from the semantics of
the code generation mechanism of the Signal compiler.

The first rule is that if a variable in the generated C code is always updated,
then we require that the corresponding signal in the source program is present
at every instant, meaning that the signal never holds the absent value. In conse-
quence of this rewrite rule, the signal x and its value when it is present x̃ (resp.
the variable xc and its updated value ˜xc in the generated C code) point to the
same node in the shared value-graph. Every reference to x and x̃ (resp. xc and
˜xc) point to the same node.
We consider the equation pz := z$1 init 0. We use the variable m̃.z to

capture the last value of the signal z. In the generated C program, the last value
of the variable zc is denoted by m.zc. The second rule is that it is required that
the last values of a signal and the corresponding variable in the generated C
code are the same. That means m̃.z = m.zc.

Finally, we add rules that mirror the relation between input signals and their
corresponding variables in the generated C code. First, for any input signal x
and the corresponding variable xc in the generated C code, if x is present, then
the value of x which is read from the environment and the value of the variable
xc after the reading statement must be equivalent. That means ˜xc and x̃ are
represented by the same subgraph in the graph. Second, if the clock of x is also
read from the environment as a parameter, then the clock of the input signal x
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is equivalent to the condition in which the variable xc is updated. It means that
we represent x̂ and C xc by the same subgraph. Consequently, every reference
to x̂ and C xc (resp. x̃ and ˜xc) points to the same node.

4 Illustrative Example

Let us illustrate the verification process in Fig. 1 on the program DEC in Listing
1.1 and its generated C code DEC step() in Listing 1.2.

In the first step, we shall compute the shared value-graph for both programs
to represent the computation of all signals and their corresponding variables.
This graph is depicted in Fig. 5.

1 process DEC=
2 (? integer FB;
3 ! integer N)
4 (| FB =̂ when (ZN<=1)
5 | N := FB default (ZN-1)
6 | ZN := N$1 init 1
7 |)
8 where integer ZN init 1
9 end;

Listing 1.1. DEC in Signal

1 EXTERN logical DEC_step() {
2 C_FB = N <= 1;
3 if (C_FB) {
4 if (!r_DEC_FB(&FB)) return FALSE; // read input FB
5 }
6 if (C_FB) N = FB; else N = N - 1;
7 w_DEC_N(N); // write output N
8 DEC_step_finalize();
9 return TRUE;

10 }

Listing 1.2. Generated C code of DEC

Note that in the C program, the variable N c (“c” is added as superscript for
the C program variables, to distinguish them from the signals in the Signal
program) is always updated (line (6)). In lines (2) and (6), the references to the
variable N c are the references to the last value of N c denoted by m.N c. The
variable FBc which corresponds to the input signal FB is updated only when
the variable C FBc is true.

In the second step, we shall normalize the above initial graph. Below is a
potential normalization scenario, meaning that it might have more than one
normalization scenario, and the validator can choose one of them. For example,
given a set of rules that can be applied, the validator can apply these rules with
different order. Fig. 6 depicts the intermediate resulting graph of this normal-
ization scenario, and Fig. 7 is the final normalized graph from the initial graph
when we cannot perform any more normalization.



Translation Validation for Synchronous Data-Flow Specification 77

Fig. 5. The shared value-graph of DEC and DEC step

1. The clock of the output signal N is a master clock which is indicated in the
generated C by the variable N c being always updated. The node {N̂ , ̂ZN} ∨
is rewritten into true.

2. By rule ∧(true, x) → x, the node {̂FB} ∧ is rewritten into {̂FB} <=.
3. The φ-function node representing the computation of N is removed and N

points to the node { ˜N} φ.
4. The φ-function node representing the computation of ZN is removed and

ZN points to the node {˜ZN} m̃.N .

5. The nodes ˜FBc and ˜FB are rewritten into a single node {˜FB} ˜FBc. All

references to them are replaced by references to {˜FB} ˜FBc.

6. The nodes m.N c and m̃.N are rewritten into a single node {m̃.N} m.N c.

All references to them are replaced by references to {m̃.N} m.N c.

Fig. 6. The resulting value-graph of DEC and DEC step
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Fig. 7. The final normalized graph of DEC and DEC step

In the final step, we check that the value of the output signal and its correspond-
ing variable in the generated code merge into a single node. In this example, we
can safely conclude that the output signal N and its corresponding variable N c

are equivalent since they point to the same node in the final normalized graph.

5 Related Work and Conclusion

There is a wide range of works for value-graph representations of expression eval-
uations in a program. For example, in [16], Weise et al. present a nice summary
of the various types of value-graph. In our context, the value-graph is used to
represent the computation of variables in both source program and its generated
C code in which the identical structures are shared. We believe that this rep-
resentation will reduce the required storage and make the normalizing process
more efficient than two separated graphs. Another remark is that the calculation
of clocks as well as the special value, the absent value, are also represented in
the shared graph.

Another related work which adopts the translation validation approach in
verification of optimizations, Tristan et al. [15], recently proposed a framework
for translation validation of Llvm optimizer. For a function and its optimized
counterpart, they construct a shared value-graph. The graph is normalized (the
graph is reduced). After the normalization, if the outputs of two functions are
represented by the same sub-graph, they can safely conclude that both functions
are equivalent.

On the other hand, Tate et al. [14] proposed a framework for translation vali-
dation. Given a function in the input program and the corresponding optimized
version of the function in the output program, they compute two value-graphs to
represent the computations of the variables. Then they transform the graph by
adding equivalent terms through a process called equality saturation. After the
saturation, if both value-graphs are the same, they can conclude that the return
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value of two given functions are the same. However, for translation validation
purposes, our normalization process is more efficient and scalable since we can
add rewrite rules into the validator that reflect what a typical compiler intends
to do (e.g., a compiler will do the constant folding optimization, then we can add
the rewrite rule for constant expressions such as three nodes subgraph (1+ 2) is
replaced by a single node 3).

The present paper provides a verification framework to prove the value-
equivalence of variables and applies this approach to the synchronous data-flow
compiler Signal. With the simplicity of the graph normalization, we believe that
translation validation of synchronous data-flow value-graph for the industrial
compiler Signal is feasible and efficient. Moreover, the normalization process
can always be extended by adding new rewrite rules. That makes the translation
validation of Sdvg scalable and flexible.

We have considered sequential code generation. A possibility is to extend this
framework to use with other code generation schemes including cluster code with
static and dynamic scheduling, modular code, and distributed code. One path
forward is the combination of this work and the work on data dependency graph
in [10,11,9]. That means that we use synchronous data-flow dependency graphs
and synchronous data-flow value-graphs as a common semantic framework to
represent the semantics of the generated code. The formalization of the notion of
“correct transformation” is defined as the refinements between two synchronous
data-flow dependency graphs and in a shared value-graph as described above.

Another possibility is that we use an Smt solver to reason on the rewriting
rules. For example, we recall the following rules:

φ(c1, φ(c2, x1, x2), x3) → φ(c1, x1, x3) if c1 ⇒ c2

φ(c1, φ(c2, x1, x2), x3) → φ(c1, x2, x3) if c1 ⇒ ¬c2

To apply these rules on a shared value-graph to reduce the nested φ-functions
(e.g., from φ(c1, φ(c2, x1, x2), x3) to φ(c1, x1, x3)), we have to check the validity
of first-order logic formulas, for instance, we check that |= (c1 ⇒ c2) and |= c1 ⇒
¬c2. We consider the use of Smt to solve the validity of the conditions as in the
above rewrite rules to normalize value-graphs.
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