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Objectives and Approach

Objectives
e Use symbolic (hence it is more simple and automated) proofs

e And enjoy computational soundness
(formal indistinguishability implies computational indistinguishability)

A possible approach
e Represent encryption schemes as frame in cryptographic ©T — calculus
e Use formal relations to prove security property (IND-CPA in our case)
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Introduction Objectives and Approach

Example

Bellare-Rogaway encryption scheme:

E(m,r) = f(r)[|(me G(r))||H(ml||r)

As a frame: O(m) = vr{xa=f(r),xo = m& G(r),xc = H(m || r)}
Prove: O(m);vry.ra.r3.{xa = r1,Xp = r2, Xc = r3 }(ideal frame) are formally
indistinguishable

Thus, Ymy, mp,¢(m¢) and ¢(ms) are formally indistinguishable
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Formal Model Terms, Frames, Equational Theory

Terms, Frames, Equational Theory

® Represent messages(plain-text, cipher-text or parts,..) as formal notions like terms, frames

e Asignature is a pair X = (S, F), .S, set of sorts, F, set of function symbols with arity of
the form arity(f) = s1 X sp X ... X sk = 8,k > 0

e Aterm T = x|a|f(Tq, To,..., Tk),f € F

e A substitution 6 = {xy = Ty,...,x, = Tp}, is well-sorted if Vi, x; and T; have the same
sort. And names(c) = |J; names(T;), var(c) = U; var(T;)

e Aframe ¢ = vi.c and names(¢) = vh, fvar(¢) = var(c)\dom(0) the set of free variables

in
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Deducibility and Equational Theory

Deducibility
e T is deducible from a frame ¢, written as 0 - T iff AM st MO = T
An equational theory is an equivalence relation E C 7 x I (written as =) s.t.
e Ty =g T, implies Ty6 =g T»C for every ¢
o Ty =g Tyimplies T{x = Ty} =g T{x = T,} for every G, x
o Ty =g T, implies T(Ty) =g ©(T>) for every
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Concrete semantics

Each frame ¢ = vﬁ.{x1 =T, Xk = Tk} is given a concrete semantic, written
as [[0]]a based on a computational algebra A which consists of

e anon-empty set of bit strings [[s]] 4 for each sort
e afunction fy : [[81]],4 X [[Sg]]A X ... X [[sk]]A — [[S]]A

e polynomial time algorithms to check the equality (=4, s) and to draw
random elements from x <7 [[s]]
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Distribution and Formal Indistinguishability

Distribution y = [[¢]]4 (of which the drawings ¢ <7 ) are computed:
o for each name a € T; draw a value & <" [[s]]a
e for each x; compute T; recursively of the structure of the term T;,
(T Th) = (T} Th)
e Two distributions are indistinguishable, written (W) = (yy,) iff for every
ppt adversary A4, the advantage

AdV’ND(/q,TL\Ifna\I’ﬁ) — P[&)ewn:ﬂl(ﬂ@) =1] —P[<13<—w41;ﬂl(n,$) =

is negligible
o =g-sound iff VTy, To, Ty =g T implies that
Plé1,62 <P [[Th, Tella,: 61 #a, €] is negligible
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Formal Non-Deducibility and Indistinguishability Relations
Formal Non-Deducibility and Indistinguishability Relations

e The formal relation deducibility is not appropriate and to reason about
what “can not be deduced” by the adversary

e For example, consider a one-way function f, va.b.{x = f(a||b)}, it is very
hard to say that what can be deduced

e Static equivalence sometimes does not imply computational soundness

e And we would like to preserve the soundness from an initial set and some
closure rules

e |t requires a new formal relation that is more flexible and finer, called
FNDR and FIR(denoted =, =), respectively
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Formal Non-Deducibility and Indistinguishability Relations
Definition

A FNDR is a relation (C F x 7)) w.r.t an equational theory E, written as [~
such that for every (¢, M) € FNDR

e if ¢ = M then () = t(M), for any renaming function t

o ifOpEMand M =g Nthen ¢ £ N

o ifo -Mand ¢ =g ¢ then ¢’ £ M

o for any frame ¢’ s.t. var(¢') C dom(¢) and names(¢’) N names(¢) = 0,

¢ = Mthen ¢/¢0 £ M
Remark: If two frames ¢,¢’ s.t. dom(¢) N dom(¢’) = 0, names(¢) N names(¢') = 0, = M, and
¢’ = Mthen {0[¢} [~ M
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FNDR and FIR Formal Non-Deducibility and Indistinguishability Relations

Soundness and FNDR Generation

= —sound iff for every ¢ and M s.t. ¢ = M implies for any polynomial-time adversary A4, the

advantage
o P[§, &M [[0,M]]a, : AM,$) =4, &] is negligible
Theorem

Sa C F x T, there exists a unique smallest set(denoted as (Sy) FnpR) such that:
® Sy C (Su)FnDR

® isaFNDR

® s sound if =g and Sy are sound

(0/,M') € F x T |30, y, Msuch that (¢, M) € Sg,
(S)enpr == ¢ =£ ©(y9),M" = 1(M) where
names(y) N names(0) = ¢, var(y) C dom(¢)
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Formal Non-Deducibility and Indistinguishability Relations
Definition

A FIR is an equivalent relation (C F x ¥) w.r.t an equational theory E, written
as 2 such that for every (¢1,02) € FIR
° (])1 = ¢2 if dom((l)1) = dom((])2)
e for any frame ¢ s.t. var(¢) C dom(d;), names(¢) N names(¢;) = 0, and
01 = 02 then 091 = 002
o if 01 =£ 02 then ¢1 = 02
e for any renaming T, ©(¢) = ¢

Remark: If four frames 01,92, 9,05 s.t. dom(¢1) N dom(z) = 0, dom(d) N dom(¢py) = 0,
names(01) N names(¢2) = 0, names(¢} ) N names(95) = 0, and ¢; = ¢, then

{01102} = {0} 05}
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Formal Non-Deducibility and Indistinguishability Relations
Soundness and FIR Generation

~Y

= —sound iff for ¢1 and 02 s.t. 01 = 0o implies for any polynomial-time
adversary A4, the advantage
o AdvNP(4,1M,01n,92q) is negligible
Theorem
Si C F x F, there exists a unique smallest set(denoted as (S;)fr) such that:
* SiC(S)rr
e isaFIR

e is sound if =g and S; are sound
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FNDR and FIR Formal Non-Deducibility and Indistinguishability Relations

FIR Generation

(Si)Fir can be generated in the following way. Let

(¢,0") € F x FIO" = 0{05]...[05}, 0" = {¢"4]...[0" n}

S := < such thatnames(¢) =0Vi=1,...,n,
( §7¢”i) € Si7 Or(q)”ivq);) € Sia 0f¢”i =E Tl(q)i)

Then (S;) fr is the transitive closure of S’
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Automated Verification Framework Verification Framework

Verification Framework

A general verification framework consists of

e basis axioms for encryption primitives(Radom, Xor, Concatenation, Hash,
One-way functions)

e the generation of FNDR and FIR
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Automated Verification Framework Verification Framework

Basis Axioms

Random
e (RD1)va.0 £ a
e (REl)va{x=a}=vri{x=r}
Xor
e (XD1) vi.G [£ M, then vh.a.{o,x =a® M} £ M
e (XE1)vh.a.{o,x =ad®d M} =vh.a{c,x=a}
Concatenation
e (CD1) vh.c £ M, then vi.c [~ M||M
e (CE1)va.b{x=a|lb} 2vr{x=r}
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Automated Verification Framework Verification Framework

Basis Axioms

Hash function

e (HD1) vi.c [~ M, H(T) ¢ st(c) then vi.{c,x = H(M)} = M

e (HE1) vi.o = M, H(T) ¢ st(c) then vi.{c,x = H(M)} 2 Vvh.r{c,x=r}
One-way function

e (OD1)va{x=f(a)}}a

e (OEt)va{x=f(a)} 2vri{x=r}
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Verification Framework

It works as following

e take representation frame as input. Generate the initial set (Sy, S;) based
on the set of basis axioms above

e construct a pair of FNDR and FIR ({Sq) enpr, (Si) Fir) according to the
generation theorems

e perform two steps above recursively of the structure of the representation
frame

e if a pair of the representation frame and the ideal frame is in (S;) g5 then
output “yes”
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Application Bellare-Rogaway Scheme

B-R’s Frame and Proof

o Opr(m) =vr{xy =1(r),xo = G(r)® m,xs = H(m||r)}, where mis the
adaptive plaintext that an adversary has chosen
e proof. Op (M) Zva.b.c.{x; = a,xo = b,x3 = c}
The FNDR and FIR are generated from the B-R’s frame as following.

Denote ¢1 = vr.{x1 =f(r)},02 = vr.{x1 = f(r),x2 = G(r)},
o5 =vr{x; = f(r),xo = G(r) ®m}, and 03 = vr.{x; = f(r),x2 = G(r) & m,x3 = H(m||r)}
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B-R’s FNDR

vr.0 = r (RD1)

vr.{xi =f(r)} = r (OD1)

vr{x; = f(r),x2 = G(r)} j= r (HD1)

vr.{x; = f(r),x2 = G(r) ® m} & r (Generation rule) ¢’ = {x; = X1, x> = X B m}
¢'o2 = r

® vr{x3 =f(r),x> = G(r)® m} |~ m||r (CD1)

® vr{xi =1f(r),x = G(r)®m,x3 = H(m||r)} = m||r (HD1)
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B-R’s FIR

® vr{x3 =f(r)} 2va{xy = a} (OE1)

® vr.b{xi =f(r),xs = b} = va.{x = a,xo = b} (Generation rule) ¢' = vb.{x; = x1, X% = b}
$'01 = 'valx = a}

vr{xi =f(r),x = G(r)} 2 vr.b.{xy = f(r),x2 = b} (HE1)

vr{xi =f(r),x = G(r)} = vr.b.{x1 = a,x> = b} (Transitive rule)

va.b.{xi = a,x = b} Zva.b.{x1 = a,xo = bd m} (XE1)

vr{xs = f(r),xo = G(r) & m} = va.b.{x; = a,x> = b@® m} (Generation rule)

o ={x1 =x1,%=x2&m}

0’02 2 d'vab.{x; = a,xo = b}

® vr{x; =f(r),x = G(r)®m} = va.b.{x = a,x = b} (Transitive rule)
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B-R’s FIR

® O3 2 vr.c{x =f(r),xo = G(r) ®m,x; = c} (HE1)

® vr.c{x; =f(r),xe = G(r)®m,x3 = c} 2 va.b.c.{x; = a,xo = b,x3 = ¢} (Generation rule)
¢, ZVC.{X1 = X1,X2 = X2, X3 = C}
0’05 2 ¢'va.b.{x; = a,xo = b}

® O3 =vab.c.{x; = a,xo = b,x3 = c} (Transitive rule)
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Application Bellare-Rogaway Scheme

Thank you!
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