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Abstract. Several generic constructions for transforming one-way func-
tions to asymmetric encryption schemes have been proposed. One-way
functions only guarantee the weak secrecy of their arguments. That is,
given the image by a one-way function of a random value, an adversary
has only negligible probability to compute this random value. Encryp-
tion schemes must guarantee a stronger secrecy notion. They must be at
least resistant against indistinguishability-attacks under chosen plaintext
text (IND-CPA). Most practical constructions have been proved in the
random oracle model (ROM for short). Such computational proofs turn
out to be complex and error prone. Bana et al. have introduced Formal
Indistinguishability Relations (FIR), as an abstraction of computational
indistinguishability. In this paper, we extend the notion of FIR to cope
with the ROM on one hand and adaptive adversaries on the other hand.
Indeed, when dealing with hash functions in the ROM and one-way func-
tions, it is important to correctly abstract the notion of weak secrecy.
Moreover, one needs to extend frames to include adversaries in order to
capture security notions as IND-CPA. To fix these problems, we consider
pairs of formal indistinguishability relations and formal non-derivability
relations. We provide a general framework along with general theorems,
that ensure soundness of our approach and then we use our new frame-
work to verify several examples of encryption schemes among which the
construction of Bellare Rogaway and Hashed ElGamal.

1 Introduction

Our day-to-day lives increasingly depend upon information and our ability to
manipulate it securely. That is, in a way that prevents malicious elements to
subvert the available information for their own benefits. This requires solutions
based on provably correct cryptographic systems (e.g., primitives and proto-
cols). There are two main frameworks for analyzing cryptographic systems; the
symbolic framework, originating from the work of Dolev and Yao [16], and the
computational approach, growing out of the work of [I8]. A significant amount
of effort has been made in order to link both approaches and profit from the ad-
vantages of each of them. Indeed, while the symbolic approach is more amenable
to automated proof methods, the computation approach can be more realistic.
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In their seminal paper [I] Abadi and Rogaway investigate the link between
the symbolic model on one hand and the computational model on the other
hand. More precisely, they introduce an equivalence relation on terms and prove
that equivalent terms correspond to indistinguishable distributions ensembles,
when interpreted in the computational model. The work of Abadi and Rogaway
has been extended to active adversaries and various cryptographic primitives in
e.g. [2120/T4/19]. An other line of work, also considering active adversaries is
followed by Backes, Pfitzmann and Waidner using reactive simulatability [5/4]
and Canetti [I2/13] using universal composability.

Related works. A recently emerging branch of relating symbolic and com-
putational models for passive adversaries is based on static equivalence from
m-calculus [3], induced by an equational theory. Equational theories provide a
framework to specify algebraic properties of the underlying signature, and hence,
symbolic computations in a similar way as for abstract data types. That is, for a
fixed equational theory, a term describes a computation in the symbolic model.
Thus, an adversary can distinguish two terms, if he is able to come up with
two computations that yield the same result when applied to one term but dif-
ferent results when applied to the other term. Such a pair of terms is called a
test. This idea can be extended to frames, which roughly speaking are tuples
of terms. Thus, a static equivalence relation is fully determined by the under-
lying equational theory, as two frames are statically equivalent, if there is no
test that separates them. In [8] Baudet, Cortier and Kremer study soundness
and faithfulness of static equivalence for general equational theories and use
their framework to prove soundness of exclusive or as well as certain symmetric
encryptions. Abadi et al. [2] use static equivalence to analyze guessing attacks.

Bana, Mohassel and Stegers [7] argue that even though static equivalence
works well to obtain soundness results for the equational theories mentioned
above, it does not work well in other important cases. Consider for instance the
Decisional Diffie Hellman assumption (DDH for short) that states that the tu-
ples (g, 9%, g% ¢g?) and (g, g%, g°, g°), are indistinguishable for randomly sampled
a,b,c. It does not seem to be obvious to come up with an equational theory
for group exponentiation such that the induced static equivalence includes this
pair of tuples without including others whose computational indistinguishability
is not proved to be a consequence of the DDH assumption. The static equiva-
lence induced by the equational theory for group exponentiation proposed in [8]
includes the pair (g,¢%, g% ¢* %) and (g, g%, ¢, ¢¢). It is unknown whether the
computational indistinguishability of these two distributions can be proved un-
der the DDH assumption. Therefore, Bana et al. propose an alternative approach
to build symbolic indistinguishability relations and introduce formal indistin-
guishability relations (FIR). A FIR is defined as a closure of an initial set of
equivalent frames with respect to simple operations which correspond to steps
in proofs by reduction. This leads to a flexible symbolic equivalence relation.
FIR has nice properties. In order to prove soundness of a FIR it is enough to
prove soundness of the initial set of equivalences. Moreover, static equivalence
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is one instance of a FIR. Bana et al. show that it is possible to come up with a
FIR whose soundness is equivalent to the DDH assumption.

The techniques introduced in this paper, borrow and generalize to arbitrary
equational theories some ideas from [15]. In [I5] the authors provide a specialized
Hoare-like logic to reason about encryption schemes in the random oracle model,
and apply their logic to prove IND-CPA of several schemes, including the generic
encryption scheme of Bellare and Rogaway [10].

Contributions. In this paper, we extend Bana et al.’s approach by introducing
a notion of symbolic equivalence that allows us to prove security of encryption
schemes symbolically. More specifically, we would like to be able to treat generic
encryption schemes that transform one-way functions to IND-CPA secure en-
cryption schemes. Therefore, three problems need to be solved. First, we need to
cope with one-way functions. This is a case where the static equivalence does not
seem to be appropriate. Indeed, let f be a one-way function, that is, a function
that is easy to compute but difficult to invert. It does not seem easy to come with
a set of equations that capture the one-wayness of such a function. Consider the
term f(a|b), where | is bit-string concatenation. We know that we cannot easily
compute alb given f(a|b) for uniformly sampled a and b. However, nothing pre-
vents us from being able to compute a for instance. Introducing equations that
allow us to compute a from f(alb), e.g., g(f(alb)) = a, may exclude some one-
way functions and does not solve the problem. For instance, nothing prevents us
from computing a prefix of b, a prefix of the prefix, etc ... The second problem
that needs to be solved is related to the fact that almost all practical provably
secure encryption schemes are analyzed in the random oracle model (ROM for
short). ROM is an idealized model in which hash functions are randomly sam-
pled functions. In this model, adversaries have oracle access to these functions.
An important property is that if an adversary is unable to compute the value of
an expression a and if H(a) has not been leaked then H(a) looks like a uniformly
sampled value. Thus, we need to be able to symbolically prove that a value of
a given expression a cannot be computed by any adversary. This is sometimes
called weak secrecy in contrast to indistinguishability based secrecy. To cope
with this problem, our notion of symbolic indistinguishability comes along with
a non-derivability symbolic relation. Thus in our approach, we start from an ini-
tial pair of a non-derivability relation and a frame equivalence relation. Then, we
provide rules that define a closure of this pair of relations in the spirit of Bana et
al.’s work. Also in our case, soundness of the obtained relations can be checked
by checking soundness of the initial relations. The third problem is related to
the fact that security notions for encryption schemes such IND-CPA and real-or-
random indistinguishability of cipher-text under chosen plaintext involve active
adversaries. Indeed, these security definitions correspond to two-phase games,
where the adversary first computes a value, then a challenge is produced, then
the adversary tries to solve the challenge. Static equivalence and FIR (as de-
fined in [7]) consider only passive adversaries. To solve this problem we consider
frames that include variables that correspond to adversaries. As frames are finite
terms, we only have finitely many such variables. This is the reason why we only
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have a degenerate form of active adversaries which is enough to treat security
of encryption schemes and digital signature, for instance. The closure rules we
propose in our framework are designed with the objective of minimizing the
initial relations which depend on the underlying cryptographic primitives and
assumptions. We illustrate the framework by considering security proofs of the
construction of Bellare and Rogaway [10] and Hash El Gamal [6].

Outline of the paper. In Section 2 we introduce the symbolic model used
for describing generic asymmetric encryption schemes. In Section Bl we describe
the computational framework and give definitions that relate the two models.
In Section @ we introduce our definition of formal indistinguishability relation
and formal non-derivability relation. We also present our method for proving
IND-CPA security. In Section Bl we illustrate our framework: we prove the con-
structions of Bellare and Rogaway [10], Hash El Gamal [6], and the encryption
scheme proposed by Pointcheval in [24]. Finally, in Section [1] we conclude.

2 Symbolic Semantics

A signature X = (S,F,H) consists of a countable infinite set of sorts S =
{s,s1,...}, a finite set of function symbols, F = {f, f1,...}, and a finite set of
oracle symbols, H = {g,h,h1,...} together with arities of the form ar(f) or
ar(h) = s1 X ... X s, — s,k > 0. Symbols in F that take k = 0 as arguments are
called constants. We suppose that there are three pairwise disjoint countable
sets N/, X and P. N is the set of names, X is the set of first-order variables, and
‘P is the set of second order variables. We assume that both names and variables
are sorted, that is, to each name or variable u, a sort s is assigned; we use s(u)
for the sot of u. Variables p € P have arities ar(p) =s; X ... X s, — s.

A renaming is a bijection 7 : N'— N such that s(a) = s(7(a)). As usual, we
extend the notation s(7") to denote the sort of a term 7. Terms of sort s are
defined by the grammar:

T:= =z variable x of sort s
[n name n of sort s
|p(Th, ..., Tx) wvariable p of arity s(T1) X ... X s(Tx) — s

)
|f(Ty,...,Tk) application of f € F with arity s(T1) x ... x s(Ty) — s
|h(Th,...,Tk) call of h € H with arity s(T1) x ... x s(Ty) —'s
We use fn(T'), pvar(T) and var(T') for the set of free names, the set of p-variables
and the set of variables that occur in the term T, respectively. Meta-variables
u,v, w range over names and variables. We use st(T") for the set of sub-terms

of T', defined in the usual way: st(u) e {u} if u is a name or a variable, and

st(U(Tr, ..., To)) € {UT, .., T)Y e iy 4T3, if 1 € FUHUP. A term T

is closed if it does not have any free variables (but it may contain p-variables),
that means var(T) = (). The set of terms is denoted by T.

Symbols in F are intended to model cryptographic primitives, symbols in H
are intended to model cryptographic oracles (in particular, hash functions in the
ROM model), and names in N are used to model secrets, i.e. concretely random
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numbers. Variables p € P are intended to model queries and challenges made by
adversaries (and can depend on previous queries).

Definition 1 (Substitution). A substitution o = {x1 = T1, ...,z = Tn} is a
mapping from variables to terms whose domain dom(o) = {x1,...,x,} is finite
and such that o(x) # x, for each x in the domain.

A substitution as above is well-sorted if x; and T; have the same sort for each
i, and there is no circular dependence x;, € var(T;,), xi, € var(Ty,), ..., xiy €
var(T;, ). The application of a substitution o to a term T is written as o(T') = To.
This definition is lifted in a standard way to the application of a substitution to
set of terms or substitutions. The normal form o* of a well-sorted substitution
o is the iterative composition of o with itself until it remains unchanged : o* =
(...((0)0)...)o. For example, if 0 = {z1 = a,z2 = f(b,x1),23 = g(x1,22)},
then o* = {z1 = a,z2 = f(b,a),z3 = g(a, f(b,a)}. A substitution is closed if all
terms (of its normal form) T; are closed. We let var(o) = U;var(T;), pvar(c) =
Uipvar(T;), n(o) = U; fn(T;), and extend the notations pvar(.), var(.), n(.) and
st(.) to tuples and set of terms in the obvious way.

The abstract semantics of symbols is described by an equational theory F,
that is an equivalence (denoted as =g) which is stable with respect to application
of contexts and well-sorted substitutions of variables.

Definition 2 (Equational Theory.). An equational theory for a given signa-
ture is an equivalence relation E C T X T (written as =g in infix notation) on
the set of terms such that

1) Th =g T implies Thyo =g Tao for every substitution o;

2) Ty =g Ty implies T{x = T\} =g T{x = Ts} for every term T and every
variable x;

3) Ty =g Ty implies 7(T1) =g 7(T3) for every renaming .

Frames ([3]) represent sequences of messages observed by an adversary. Formally:

Definition 3 (Frame). A frame is an expression of the form ¢ = vn.o where
o is a well-sorted substitution, and n is n(c), the set of all names occurring in

o. By abuse of notation we also use n(¢) for n, the set of names bounded in the

frame ¢. We note fv(o) = var(o) \ dom(o) the set of free variables of ¢.

The novelty of our definition of frames consists in permitting adversaries to
interact with frames using p-variables. This is necessary to be able to cope with
adaptive adversaries. We note the set of frames by F.

The normal form ¢* of a frame ¢ = vn.o is the frame ¢* = vn.o*. From

now on, we tacitly identify substitutions and frames with their normal form.
Next, we define composition of frames. Let ¢ = vn.{x1 = T1,...,x, = T} and
¢ = vn/.0 be frames with 7Nn’ = . Then, ¢¢' denotes the frame v(RUn/).{z; =
Tyo, ...ty =Tho}.
Definition 4 (Equational equivalence). Let ¢ and ¢’ be two frames such
that ¢* = vn.o and ¢ = vin.o' with o0 = {x1 = T1,...,xn = Ty} and o' =
{1 =TY,...,2, = T!}. Given the equational theory E, we say that ¢ and ¢ are
equationally equivalent written ¢ =g ¢, if and only if Tyo =g T}’ for all i.
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3 Computational Semantics

3.1 Distributions and Indistinguishability

Let us note n € N the security parameter. We are interested in analyzing generic
schemes for asymmetric encryption in the random oracle model [I7/10]. We write
h < 2 to denote that h is randomly chosen from the set of functions with
appropriate domain (depending on 7). By abuse of notation, for a list H =
hi,--- , hy of hash functions, we write H <~ (2 instead of the sequence h; <
2,... hm & 0. We fix a finite set H = {hq,...,h,} of hash functions. A
distribution ensemble is a countable sequence of distributions { X, },cn. We only
consider distribution ensembles that can be constructed in polynomial time by
probabilistic algorithms that have oracle access to O = H. Given two distribution
ensembles X = {X,}yen and X’ = {X] },en, an algorithm A and n € N, the
advantage of A in distinguishing X,, and X is defined by:

Adv(A,n, X, X") = Prlz < X, : A9(n,2) = 1] — Prz < X+ A°(n,z) = 1].

Then, two distribution ensembles X and X' are called indistinguishable (de-
noted by X ~ X’) if for any probabilistic polynomial-time algorithm A, the
advantage Adv(A,n, X, X') is negligible as a function of 7, that is, for any n > 0,
it become eventually smaller than n~" as 1 tends to infinity.

3.2 Frames as Distributions

We now give terms and frames a computational semantics parameterized by a
computable implementation of the primitives in ROM. Provided a set of sorts S
and a set of symbols F, a computational algebra A = (S, F) consists of

- a sequence of non-empty finite set of bit strings [s]a = {[s]a,n}nen with
[s]a,, € {0,1}* for each sort s € S. For simplicity of the presentation, we
assume that all sorts are large domains, whose cardinalities are exponential in
the security parameter 7;

- a sequence of polynomial time computable functions [f]a = {[f]a,n}tnen
with [flan @ [s1]an X ... X [sk]a, — [s]a, for each f € F with ar(f) =
S§1 X ... X S8 — S,

- a polynomial time computable congruence =4, s for each sort s, in order to
check the equality of elements in [s] 4, (the same element may be represented by
different bit strings). By congruence, we mean a reflexive, symmetric, and transi-
tive relation such that e1 =45,y €1, ..., €6 =a,5,.n €k = [[lan(er, nex) =asy
[f1an(er,...;e}) ( we usually omit s,n and A and write = for =4 5 );

- a polynomial time procedure to draw random elements from [s]4,,; we de-
note such a drawing by @ <% [s]4,,; for simplicity, in this paper we suppose
that all these drawing follow a uniform distribution.

From now on we assume a fixed computational algebra (S, F), and a fixed 7,
and for simplicity we omit the indices A,s and . For lack of space, we use ppt to
stand for probabilistic polynomial-time. Given H a fixed set of hash functions,
and (A;);er a fixed set of ppt functions (can be seen as a ppt adversary A taking
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an additional input ), we associate to each frame ¢ = vn.{z1 = T1,...,xx = T}}
a sequence of distributions [¢]1,4 computed as follows:

- for each name n of sort s appearing in 72, draw a value 7 < [s];

- for each variable z;(1 < i < k) of sort s;, compute T; € [s:] recursively on
the structure of terms: #; = 7T} ;

- for each call h;(TY,...,T! ) compute recursively on the structure of terms:

m
hi(Tllﬂ s 7T1$1) = hl(Tllv s 7T7/n);
- for each call f(T7,...,T} ) compute recursively on the structure of terms:

f(Tll""’Tvln) = [[f]](Tll""vTrln)§

- for each call p;(TYy,...,T),) compute recursively on the structure of terms
and draw a value pi(Tlﬂ/..\.,Tgl) L .AO(Z',TI’7 LT

- return the value (;AS ={x; = Ty, ... xp = Tk}

Such ¢ = {z1 = bsey,...,x, = bse,} with bse; € [s;] are called concrete
frames. We extend the notation [.] to (sets of) closed terms in the obvious way.

Now the concrete semantics of a frame ¢ with respect to an adversary A, is
given by the following sequence of distributions (one for each implicit 7):

[¢]a=[H &< 20 =H;¢ < [Blp,a: 0]

When pvar(¢) = @), semantics of ¢ does not depend on the adversary A and
we will use the notation [¢] (or [¢]«) instead of [¢].4 (respectively [¢]w,.4)-

3.3 Soundness and Completeness

The computational model of a cryptographic scheme is closer to reality than
its formal representation by being a more detailed description. Therefore, the
accuracy of a formal model can be characterized based on how close it is to
the computational model. For this reason, we introduce the notions of sound-
ness and completeness (inspired from [8]) that relate relations in the symbolic
model with respect to similar relations in the computational model. Let E be
an equivalence theory and let R{ C T x T, Ro CF x T, and R3 C F x F be
relations on closed frames, on closed terms, and relations on closed frames and
terms, respectively.

- R; is =-sound iff for all terms T3, T5 of the same sort, (T1,7%) € Ry implies
that Pr[ey, €, Z [T1,T2] 4 : é1 # é2))] is negligible for any ppt adversary A.

- Ry is =-complete iff for all terms T3,Ty of the same sort, (T1,72) ¢ Ry
implies that Pr[ey, ey < [T1,To]a : é1 # é2))] is non-negligible for some ppt
adversary A.

- R, is =-faithful iff for all terms T3, T» of the same sort, (77,72) ¢ Ry implies
that Pr[éy, €, Z [T1,T2] 4 : é1 = é2))] is negligible for any ppt adversary A.

- Ry is K-sound iff all frame ¢ and term T, (¢, T) € Ry implies that Pr[¢, é <
[6,T] 4 : AC(¢) = €] is negligible for any ppt adversary A.

- Ry is -complete iff for all frame ¢ and term T, (¢,T) ¢ Ry implies that
Pr(g,é < [¢,T]a : A9(¢) = €] is non-negligible for some ppt adversary A.

- R3 is &~ g-sound iff for all frames ¢1, ¢2 with the same domain, (¢1, p2) € Rs
implies that ([¢1]4) ~ ([¢2].4) for any ppt adversary A.
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- R3 is & pg-complete iff for all frames ¢1, ¢ with the same domain, (¢1, ¢2) &
R3 implies that ([¢1].4) 7 ([¢2].4) for some ppt adversary A.

4 Formal Relations

One challenge of the paper is to propose appropriate symbolic relations that
correctly abstract computational properties as indistinguishability of two distri-
butions or weak secrecy of some random value (the adversary has only negligible
probability to compute it). In this section we provide two symbolic relations
(called formal indistinguishability relation and formal non-derivability relation)
that are sound abstractions for the two above computational properties.

First we define well-formed relations and we recall a simplified definition of a
formal indistinguishability relation as proposed in [7].

Definition 5 (Well-formed relations). A relation Sq C Fx T is called well-
formed if fn(M) C n(¢) for any (¢, M) € Sq, and a relation S; C F x F is
well-formed if dom(¢1) = dom(p2) for any (¢1,P2) € S;.

Definition 6. [FIR [7]] A well-formed relation 2C F x F is called a formal
indistinguishability relation (FIR for short) with respect to the equational
theory =g, if & is closed with respect to the following closure rules:

(GE1) If ¢1 = o then dd1 = dpa, for any frame ¢ such that var(p) C dom(p;)
and n(¢) Nn(e;) = 0.

(GE2) ¢ = ¢’ for any frame ¢ such that ¢/ =g ¢.

(GE3) 1(¢) = ¢ for any renaming T.

This definition is a good starting point to capture indistinguishability in the
following sense: if we have a correct implementation of the abstract algebra (i.e.
=g is =-sound) and we were provided with some initial relation S (reflecting
some computational assumption) which is ~-sound , then the closure of S using
the above rules produces a larger relation which still remains ~-sound. But in
order to use this definition for real cryptographic constructions , we need to
enrich it in several aspects. First, most of constructions which are proposed
in the literature, ([9], [28], [22], [24], [26], [10]) use bijective functions (XOR-~
function or permutations) as basic bricks. To deal with these constructions, we
add the following closure rule:
(GE4) If M, N are terms such that N[M/z] =g y, M[N/y] =g z, var(M) = {y}
and var(N) = {z}, then for any substitution o such that r & (fn(o) U fn(M)U
fn(N)) and x &€ dom(o) it holds vn.r{o,x = M[r/y])} 2 vin.r{o,z =1}
Second, cryptographic constructions use often hash functions. In ideal mod-
els, if one applies a hash function (modeled by random functions [I0] or pseudo-
random permutations [23]) to a argument that is weakly secret, it returns a
random value. And they are quite frequent primitives in cryptography that only
ensure weak secrecy. One-way functions only guarantee that an adversary that
possesses the image by a one-way function of a random value, has only a negligi-
ble probability to compute this value. The computational Diffie-Hellman (CDH)
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assumption states that if given the tuple g, g% g° for some randomly-chosen
generator g and some random values a, b, it is computationally intractable to
compute g*** (equivalently g®** is a weakly secret value). This motivates us to
introduce the formal non-derivability relation as an abstraction of weak se-
crecy. Let us explain the basic closure rules of this relation. Since we assume
that all sorts are implemented by large finite sets of bit strings, it is clearly that
(GD1) vr.D i r.

Renaming does not change the concrete semantics of terms or frames.
(GD2) If ¢ % M then 7(¢)  7(M) for any renaming 7.

If the equational theory is preserved in the computational world, then equiv-
alent terms or frames are indistinguishable.

(GD3) If ¢ # M then ¢ # N for any term N =5 M.
(GD4) If ¢ # M then ¢ ¥ M for any frame ¢’ =g ¢.

If some bit string (concrete implementation of term M) is weakly secret, then
any polynomially computation (abstracted by the frame ¢') does not change
this.

(GD5) If ¢ # M then ¢'¢ ¥ M for any frame ¢’ such that n(¢’) Nn(d) = 0.

Next rule gives a relationship between indistiguishability and secrecy: if two
distributions are indistinguishable, then they leak exactly the same information.
(GDG) For all substitutions o1, o2 such that x & dom(o;), if vn.{o1,2 = M} =
vin{oe,x = N} and vn.oy ¥ M then vii.og ¥ N.

If the concrete implementation of the symbolic contextual term 7'(2) is a fea-
sible computation, that is, the adversary has all the needed information to com-
pute T(-) (fn(T) Nn(¢) = 0), then the concrete implementation of (T'¢)[M/z]
is weakly secret only because the implementation of M itself is weakly secret.
(GD7) If ¢ # (T¢)[M/z] then ¢ ¥ M, where T is such that fn(T)Nn(¢) = 0.

One can remark now that (GD6) may be generalized to the rule below
(GD6g) If T, U are terms such that (fn(T)U fn(U))Nn =0, z € var(T)\var(U)
and U[T/y] =g z, then for all substitutions o1, 02 such that = ¢ dom(o;) and
vindor,x =T[M/z]} 2 vn{os,x = T[N/z]} and vin.or ¥ M then vn.os ¥ N.

Actually, (GDG6g) is consequence of rules (GD3), (GD6) and (GD7).

Now the rules that capture hash functions in the ROM: the image by a random
function of a weakly secret value is a completely random value.

(HD1) If via.r.o[r/h(T)] # T and r & n(o), and if o[r/h(T)] does not contain
any subterm of the form h(e), then vii.o % T.

(HE1) If vii.r.ofr/R(T)] # T and r & n(c), and if or/h(T)] does not contain
any subterm of the form h(e), then vn.r.c =2 vn.r.or/h(T)].

The definition below formalizes the tight connection between FIR and FNDR.

Definition 7 (FNDR and FIR). A pair of well formed relations (#,%2) is
a pair of (formal non-derivability relation, formal indistinguishability

~

relation) with respect to the equational theory =g, if (#,%) is closed with re-
spect to the rules (GD1), ..., (GD7),(GFE1),...,(GE4), (HD1),(HE1) and = is an
equivalence.

The theorem [ shows that if a pair (FIR,FNDR) was generated by relations Sy
and S;, then it is sufficient to check only soundness of elements in Sy and .S; to
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ensure that the closures (Sq)y and (S;)~ are sound. We define (D1, I;) T (Dq, I2)
if and only if D1 C Dy and I7 C I5. It is easy to see that C is an order.

Theorem 1. Let (S4,5;) be a well-formed pair of relations. Then, it exists a
unique smallest (with respect to T) pair denoted ((Sq)y, (Si)~) of (FNDR, FIR)

such that (Sq)y 2 Sq and (S;)~ 2 S;. In addition, if =g is =-sound, Sq is
t-sound and S; is ~=-sound, then also (Sq)y is /-sound and (S;)~ is ~-sound.

The reader should notice that rules (HE1) and (HD1) can be strengthened if
=g is =-faithful: “if o[r/h(T)] does not contain any subterm of the form h(e)”
can be replaced with “T" #g T” for any subterm h(T") of o[r/h(T)]”.

5 Applications

We apply the framework of Section M in order to prove IND-CPA security of sev-
eral generic constructions for asymmetric encryptions. So we will consider pairs
of relations (#,%) = ((Sq)y, (Si)~) generated by some initial sets (Sg,S;), in
different equational theories. We assume that all =g, Sy, S; that are considered
in this section satisfy the conditions of Theorem [l We emphasize the following
fact: adding other equations than those considered does not break the computa-
tional soundness of results proved in this section, as long as the computational
hypothesis encoded by Sy and S; still hold.
First we introduce a general abstract algebra that we will extend in order to
cover different constructions. We consider three sorts Data, Data', Data?, and
the symbols || : Data' x Data®? — Data, ®s : S xS — S, 0g : S, with S €
{Data, Data', Data®} and 7; : Data — Data?, with j € {1,2}. For simplicity,
we omit S when using ©g or 0g . The equational theory F, is generated by:
(XEql) x ®0=p,z (XEq2) t ©y=p,y DT (PEq1) 71 (x||ly) =g, ©
(XEq2) x © x=p,0 (XEq4) z® (y ® 2) =k, (z @ y) & z (PEq2) m2(z||ly) =g,y

|| is intended to model concatenation, & is the classical XOR and =; are the
projections. Next rules are consequences of the closure rules from Section Ml
(SyE) If ¢1 = ¢2 then ¢o = ¢;.
(T’/‘E) If ¢1 = (bg and (bg = (bg then ¢1 = (bg.
(XE1) It r & (fn(o)U fn(T)) then vn.r{o,x =r ® T} 2 var{o,z=r}.
(CD1) It (¢ # T1 V ¢ # Tp) then ¢ 3 Th||To.
(XD1) f viio # T and r & (nU fn(T)) then vnor{o,c =r®T} ¥ T.

5.1 Trapdoor One-Way Functions in the Symbolic Model

We extend the above algebra in order to model trapdoor one-way functions. We
add a sort iData and new symbols f : Data x Data — iData ,f~' : iData x
Data — Data, pub : Data — Data. f is a trapdoor permutation, with f~! being
the inverse function. We extend the equational theory:
(OEq1) f=1(f(z,pub(y)),y) =g, .

To simplify the notations, we will use fi(e) instead of f(e, pub(k)). Now we
want to capture the one wayness of function f. Computationally, a one-way
function only ensures the weakly secrecy of a random argument r (as long as
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the key k is not disclosed to the adversary). Hence we define S; = () and Sy =
{(wkor{xy = pub(k),z = fr(r)},r)}.

The following frame encodes the Bellare- Rogaway encryption scheme ([I0]):
Gpe(m) = vhr- Loy = pub(k), za = fr(r),y = g(r) & m, = = h(ml|r)}
where m is the plaintext to be encrypted, f is a trapdoor one-way function, and
g and h are hash functions (hence oracles in the ROM model).

Now we can see the necessity of p-variables in order to encode IND-CPA
security of an encryption scheme. It is not enough to prove that for any two
messages m1 and msy the following equivalence holds:

vhkr{a, = pub(k), 20 = fi(r),y = g(r) & mu, = = h(ma|r)} =
vk.r{ay, = pub(k), 20 = fi(r),y = g(r) & ma, = = h(mo|lr)}

We did not capture that the advereary is adaptive and she can choose her
challenges depending on the public key. We must prove a stronger equivalence:
for any terms p(xx) and p (mk)

vk.r{xzy = pub(k), za = fx(r),y = g(r) @ p(ay), 2 = h(p(ax)||r)} =
vk.r{z, = pub(k), za = fu(r),y = g(r) ® p'(zx), 2 = h(p'(zx)||r)}
The reader noticed that for asyrnrnetric encryption, this suffices to ensure IND-
CPA: possessing the public key and having access to hash-oracles allow to en-
crypt any message (having an oracle to encrypt messages becomes superfluous).

Actually, it suffices to prove vk.r.s.t.{zy = pub(k),z, = fr(r),y = g(r) &
p(zr), z = h(p(zi)||r)} = vkr.st{zy = pub(k),zq = fr(r),y = s,z = t}. By
transitivity, this implies: for any two challenges that adversary chooses for p(zy),
the distributions she gets are indistinguishable.

Next rules are consequences of the definition of S; and of the closure rules.
(OD1) If f is a one-way function, then vk.r.{xy = pub(k),z = fr(r)} # r.
(ODg1) If f is a one-way function and vn.vk.{z=pub(k),z=T} 2 vrvk.{z; =
pub(k),z = r}, then vn.vk{xp = pub(k),z = fr(T)} # T.

The proof of IND-CPA security of Bellare-Rogaway scheme is presented in
Figure[[l To simplify the notations, implicitly, all names in frames are restricted
and we note o9 = x, = pub(k),xq = fr(r), and o3 = 02,y = g(r) D p(ak).

5.2 Partially One-Way Functions in the Symbolic Model

In this subsection, we show how we can deal with trapdoor partially one-way
functions ([24]). We demand for function f a stronger property than one-wayness.
Let Data; be a new sort, and let f : Data; x Data x Data — iData and
f~':iData x Data — Data, be functions such that

(OEq1) f(f~"(x,y), 2, pub(y)) =g, =.

The function f is said partially one way, if for any given f(r,s,pub(k)), it
is impossible to compute in polynomial time a corresponding r without the
trapdoor k. In order to deal with fact that f is partially one-way, we define
S; =0 and Sy = {(vk.r.s.{z = pub(k),z = fr(r,s)},7)}.

The frame below encodes the encryption scheme proposed by Pointcheval ([24]).
bpo(m) = V5. {wy = pub(k), za = fe(r, h(mlls)),y = g(r) & (m]|s)}

where m is the plaintext to be encrypted, f is a trapdoor partially one-way
function, and g and h are hash functions. To prove IND-CPA security of this
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OD1
GD5 {oah yr

HD1 {oz,y=s"Y #r
GD5 {o2,y=9g(r)} ¥ r
CD1 {o2,y=9g(r) ®p(zi), 2 =1t} ¥ r
HE1 {o2,y = g(r) ® p(ax), z = t} ¥ p(ze)llr
E {02,y = 9(r) ® p(zx), z = h(p(zr)lIr)} = {02,y = 9(r) & p(zx), z = t} (T1)
{o2,9 =9(r) ® p(xr), z = h(p(zk)lIr)} = {zr = pub(k), za = fir(r),y = s,z =t}
Fig. 1. Proof of IND-CPA security of Bellare-Rogaway scheme

OD1
GDS5 {o2} ¥ r

{o2,y =5} #r
HFE1
{02,y = g(r)} = {02,y = s}
GE1 XFE1
TE {o3} = {02,y =s Dp(zk)} {02,y =s@®p(zk)} = {02,y = s}
CE1 {o2,y = g(r) @ p(xy)} = {02,y = s}
{o2,y =g(r) ®p(ak), 2 =t} = {o2,y = 5,2 =t}

Fig. 2. Tree (T'1) from Figure[ll

scheme, we show that vk.r.s.sj.so{zr = pub(k),zqs = fr(r,h(p(zk)|]s)),y =
g(r) @ (p(zk)||s)} 2 vk.r.s.s1.s0.{xr = pub(k),zq = fr(r,s1),y = s2}.

Next rule is a consequence of the definition of Sj.
(ODp1) If f is a one-way function, then vk.r.s.{z) = pub(k),x = fr(r,s)} #* r.
The proof of IND-CPA security of Pointcheval scheme is presented in Figure [3
To simplify notations we suppose that all names in frames are restricted and we
note oy =z, = pub(k), x4 = fi(r, h(p(zk)||s)) and o3 = o2,y = s2 @ (p(xk)||s).

5.3 Computational Diffie Hellman (CDH) Assumption

In this subsection we prove IND-CPA security of a variant of Hash-ElGamal
encryption scheme ([27]) in the random oracle model under the CDH assumption.
The proof of the original scheme([6]) can be easily obtained from our proof and
it can be done entirely in our framework. We will consider two sorts G and A,
symbol functions exp: G X A — G, * : AXA— A, 04:A 14:A 1g:G. We
write MY instead of exp(M, N). We extend E, by the following equations:
(XEqel) (2¥)* =g, a¥**. (XEqe2) z'4 =g, x. (XEqe3) 294 =g, 1¢.
To capture the CDH Assumption in the symbolic model we define S; = @) and
Sa={(vgrs{zry =g,v=g°y=g"},9°")}. Then we get the next rule:
(CDH) vg.r.s{zy =g,z = g%,y = g"} # g°*".

The following frame encodes the Hash-ElGamal encryption scheme.
bher(m) =vgrsf{z, =g, x=g°%y=g", 2= hg"") ®m}
where m is the plaintext to be encrypted, (g,¢°) is the public key and h is
a hash function. The proof of IND-CPA security of Hash-ElGamal’s scheme is
provided in Figure [l We supposed that all names are restricted and we noted
oe=xg=g,2=¢9°y=9¢",and oy = 0c, 2 =t B p(z,x4).
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(T2) (T3)

TrE
" o2, 5= 9(r) ® (0(z)l19)} = {2k = pub(k), 7a = fi(r,51),y = 52}

Fig. 3. Proof of IND-CPA security of Pointcheval scheme

SyE XE1 {oz,z =r} 2 {o2,y=s2,z =1} GD5 ODp1 {o2} #r
GD6 {o2,y =82,z =71} 2{oz,z=r} {o2,y =52} ¥ r
HE1 {os} #r
{o2,y =g(r) ® (p(zr)lls)} = {os}
Fig. 4. Tree (T2) from Figure [3]
GD1 0y s
GDS5 )
CD1 {zr = pub(k), xa = fr(r,s1)} ¥ s
Hip k= pubR), v = fulr s} # pee)lls
XE1 QE1 {o2} = {zr = pub(k), za = fr(r,s1)}
TrE {o3} =2 {02,y = s2} {02,y = s2} = {z) = pub(k),za = fr(r,s1),y = s2}
{o3} = {zp = pub(k),za = fr(r,s1),y = s2}
Fig. 5. Tree (T'3) from Figure
CDH o
GD5 {oe} ?LQS*T
L foez=1} %
GE1 {o’e,z:h(gs*r)}%/{g-e’z:t}
_ {oe 2= (g™ ®p(r,20)} 2 {og} {0y} 2 {oe,z=1)

s

{zg=9,2=9"y=9",2=h(g"") ®p(z,24)} 2 {zg =g,z =9",y=9g",2 =t}

Fig. 6. Proof of IND-CPA security of Hash-ElGamal’s scheme

6 Static Equivalence and FIR

In this section we adapt the definition of deductibility and static equivalence ([]])
to our framework. After, we justify why they are too coarse to be appropriate
abstractions for indistinguishability and weak secrecy. Actually, Proposition [I]
states that they are coarser approximations of indistinguishability and weak
secrecy than FIR and FNDR.

If ¢ is a frame, and M, N are terms, then we use (M =g N)¢ for M¢p =g N¢.

Definition 8 (Deductibility). A (closed) term T is deductible from a frame
¢ where (p;)ier = pvar(¢), written ¢ = T, if and only if there exists a term M
and a set of terms (M;)icr, such that var(M) C dom(¢), ar(M;) = ar(p:),
fn(M’ MZ) N n(d)) =0 and (M =E T)(QS[(MZ(EU s 7Tik)/pi(Ti17 s ’rflk))zéf])
We denote by t# the logical negation of F.

For instance, we consider the frame ¢ = vki.ko.s1.52.{x1 = k1,22 = ko, x5 =
h((s1® k1) @ p(z1,22)), 24 = h((s2 ® k2) @ p(z1,22))} and the equational theory
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Eg4. Then h(s1)®ks is deductible from ¢ since h(s1)Dke =g, x3[r1/p(21, T2)| D22
but h(s1) @ h(s2) is not deductible.

If we consider the frame ¢’ = vk.r.s.{zr = pub(k),x = fi(r||s)} where fisa
trapdoor one-way function, then neither r||s, nor r is deductible from ¢’. The one-
wayness of f is modelled by the impossibility of inverting f if k is not disclosed.
While this is fair for r||s according to the computational guarantees of f, it seems
too strong of assuming that r alone cannot be computed if f is “just” one-way. This
raises some doubts about the fairness of I/ as a good abstraction of weak secrecy. We
can try to correct this and add an equation of the form g(f (z||z, pub(y)),y) =g, =.
And now, what about ry, if one gives f((r1||r2)||s)? In the symbolic setting r; is
not deductible; computationally, we have no guarantee; hence, when one stops to

add equations? Moreover, in this way we could exclude ” good” one-way functions:

computationally, if f is a one-way function, then f'(z||y) = x||f(y), is another

one-way function. The advantage of defining non-deductibility as we did it in the
SectionM] is that first, we capture “just” what is supposed to be true in the compu-
tational setting, and second, if we add more equations to our abstract algebra (be-
cause we discovered that the implementation satisfies more equations) in a coher-
ent manner with respect to the initial computational assumptions, then our proofs
still remain computationally sound. This is not true for I7.

Definition 9. A test for a frame ¢ is a tuple T = ((M;)ic;, M, N) such that
ar(M;) = ar(p;), var(M,N) C dom(®), fn(M,N,M;) N n(¢) = 0. Then ¢
passes 1 if and only if (M =g N)(¢[(M;(T5,, ..., Ti)/0i(Tiys - -, T3 ) )iex])-

Definition 10 (Statically Equivalent). Two frames ¢1 and ¢o are statically
equivalent, written as ¢1 =g ¢, if and only if

(i) dom(o1) = dom(os);

(it) for any test T, ¢1 passes the test T if and only if ¢2 passes the test 1.

For instance, the two frames ¢ = vk.s.{x; = k,x2 = h(s) ® (k & p(x1))} and
¢2 = vk.s{z1 = k,20 = s® (k@ p(zx1))} are statically equivalent with respect
to Ey. However the two frames ¢ = vk.s.{z1 = k,x2 = h(s) ® (kB p(x1)), x5 =
h(s)} and ¢} = vk.s.{x1 = k, 22 = s® (k®p(x1)), x5 = h(s)} are not. The frame
@4 passes the test ((x1),x2,x3), but ¢} does not.

Let us now consider the equational theory from subsection Then the fol-
lowing frames vg.a.b.{x; = g,72 = g%, 3 = ¢*, 24 = ¢***) and vg.a.b.c.{x; =
g,r2 = g%, w3 = g°, x4 = g°) are statically equivalent. This seems right, it is
the DDH assumption: a computational implementation that satisfies indistin-
guishability for the interpretations of this two frames will simply satisfy the
DDH assumption. But soundness would imply much more. Even vg.a.b.{z; =
g, 23 = g% w3 =g" x4 = gaz*bz} and vg.a.b.c.{r1 = g,72 = g%, 23 = ¢°, 4 = ¢°}
will be statically equivalent. It is unreasonable to assume that this is true for
the computational setting. As for non-deductibility, the advantage of considering
FIR as the abstraction of indistinguishability, is that if we add equations in a
coherent manner with respect to the initial computational assumptions (that is
with S;), then our proofs still remain computationally sound. The proposition
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below says that if we consider initial reasonable sets Sy and .S;, then we get finer
approximations of indistinguishability and weak secrecy than t/ and ~g.

Proposition 1. Let (Sq,S;) be such that Sq Cif and S; C~g. Then (Sqg)y
and (S;)=~ Crp.

7 Conclusion

In this paper we developed a general framework for relating formal and com-
putational models for generic encryption schemes in the random oracle model.
We proposed general definitions of formal indistinguishability relation and for-
mal non-derivability relation, that is symbolic relations that are computationally
sound by construction. We extended previous work with respect to several as-
pects. First, our framework can cope with adaptive adversaries. This is manda-
tory in order to prove IND-CPA security. Second, many general constructions
use one-way functions, and often they are analyzed in the random oracle model:
hence the necessity to capture the weak secrecy in the computational world.
Third, the closure rules we propose are designed with the objective of minimizing
the initial relations which depend of the cryptographic primitives and assump-
tions. We illustrated our framework on several generic encryption schemes: we
proved IND-CPA security of the scheme proposed by Bellare and Rogaway in
[10], of Hash El Gamal [6] and of the scheme proposed by Pointcheval in [24].
As future works, we project to study the (relative) completeness of various
equational symbolic theories. Other extensions will be to capture fully active
adversaries or exact security (as in [I1], we could define indistinguishabiliy as
up-to some explicit probability p instead of up-to a negligible probability).
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